IOLANDA DE FATIMA LOPES CALVO TIBERIO

(Fonte: Lattes)
Índice h a partir de 2011
23
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Clínica Médica, Faculdade de Medicina - Docente
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/20 - Laboratório de Terapêutica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 175
  • article 10 Citação(ões) na Scopus
    Th17/Treg-Related Intracellular Signaling in Patients with Chronic Obstructive Pulmonary Disease: Comparison between Local and Systemic Responses
    (2021) LOURENCO, Juliana D.; TEODORO, Walcy R.; BARBEIRO, Denise F.; VELOSA, Ana Paula P.; SILVA, Larissa E. F.; KOHLER, Julia B.; MOREIRA, Alyne R.; V, Marcelo Aun; SILVA, Isadora C. da; FERNANDES, Frederico L. A.; NEGRI, Elnara M.; GROSS, Jefferson L.; TIBERIO, Iolanda F. L. C.; ITO, Juliana T.; LOPES, Fernanda D. T. Q. S.
    Th17/Treg imbalance plays a pivotal role in COPD development and progression. We aimed to assess Th17/Treg-related intracellular signaling at different COPD stages in local and systemic responses. Lung tissue and/or peripheral blood samples were collected and divided into non-obstructed (NOS), COPD stages I and II, and COPD stages III and IV groups. Gene expression of STAT3 and -5, ROR gamma t, Foxp3, interleukin (IL)-6, -17, -10, and TGF-beta was assessed by RT-qPCR. IL-6, -17, -10, and TGF-beta levels were determined by ELISA. We observed increased STAT3, ROR gamma t, Foxp3, IL-6, and TGF-beta gene expression and IL-6 levels in the lungs of COPD I and II patients compared to those of NOS patients. Regarding the systemic response, we observed increased STAT3, ROR gamma t, IL-6, and TGF-beta gene expression in the COPD III and IV group and increased IL-6 levels in the COPD I and II group. STAT5 was increased in COPD III and IV patients, although there was a decrease in Foxp3 expression and IL-10 levels in the COPD I and II and COPD III and IV groups, respectively. We demonstrated that an increase in Th17 intracellular signaling in the lungs precedes this increase in the systemic response, whereas Treg intracellular signaling varies between the compartments analyzed in different COPD stages.
  • article 11 Citação(ões) na Scopus
    Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation
    (2021) I, Marcia Bittencourt-Mernak; PINHEIRO, Nathalia M.; SILVA, Rafael C. da; PONCI, Vitor; BANZATO, Rosana; PINHEIRO, Aruana J. M. C. R.; OLIVO, Clarice R.; TIBERIO, Iolanda F. L. C.; LIMA NETO, Lidio G.; SANTANA, Fernanda P. R.; LAGO, Joao H. G.; PRADO, Carla M.
    Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1 beta and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 beta levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
  • conferenceObject
    Effects of melatonin in an Asthma-COPD overlap model
    (2023) RIBEIRO, Cristiane; SCHEFFER, Vitorio; CAMARGO, Leandro; FUKUZAKI, Silvia; ALMEIDA, Francine; RIGHETTI, Renato; TIBERIO, Iolanda; LEICK, Edna
  • article 11 Citação(ões) na Scopus
    Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism
    (2020) VASCONCELOS, Luiz Henrique C.; SILVA, Maria da Conceicao C.; COSTA, Alana C.; OLIVEIRA, Giuliana A. de; SOUZA, Iara Leao Luna de; RIGHETTI, Renato F.; QUEIROGA, Fernando R.; CARDOSO, Glebia A.; SILVA, Alexandre S.; SILVA, Patricia M. da; VIEIRA, Giciane C.; TIBERIO, Iolanda de F. L. C.; MADRUGA, Marta S.; CAVALCANTE, Fabiana de A.; SILVA, Bagnolia A. da
    Asthma is a chronic inflammatory disease of the airways characterized by immune cell infiltrates, bronchial hyperresponsiveness, and declining lung function. Thus, the possible effects of virgin coconut oil on a chronic allergic lung inflammation model were evaluated. Morphology of lung and airway tissue exhibited peribronchial inflammatory infiltrate, epithelial hyperplasia, and smooth muscle thickening in guinea pigs submitted to ovalbumin sensitization, which were prevented by virgin coconut oil supplementation. Additionally, in animals with lung inflammation, trachea contracted in response to ovalbumin administration, showed a greater contractile response to carbachol (CCh) and histamine, and these responses were prevented by the virgin coconut oil supplementation. Apocynin, a NADPH oxidase inhibitor, did not reduce the potency of CCh, whereas tempol, a superoxide dismutase mimetic, reduced potency only in nonsensitized animals. Catalase reduced the CCh potency in nonsensitized animals and animals sensitized and treated with coconut oil, indicating the participation of superoxide anion and hydrogen peroxide in the hypercontractility, which was prevented by virgin coconut oil. In the presence of L-NAME, a nitric oxide synthase (NOS) inhibitor, the CCh curve remained unchanged in nonsensitized animals but had increased efficacy and potency in sensitized animals, indicating an inhibition of endothelial NOS but ineffective in inhibiting inducible NOS. In animals sensitized and treated with coconut oil, the CCh curve was not altered, indicating a reduction in the release of NO by inducible NOS. These data were confirmed by peribronchiolar expression analysis of iNOS. The antioxidant capacity was reduced in the lungs of animals with chronic allergic lung inflammation, which was reversed by the coconut oil, and confirmed by analysis of peribronchiolar 8-iso-PGF2 alpha content. Therefore, the virgin coconut oil supplementation reverses peribronchial inflammatory infiltrate, epithelial hyperplasia, smooth muscle thickening, and hypercontractility through oxidative stress and its interactions with the NO pathway.
  • article 1 Citação(ões) na Scopus
    Increased bone resorption by long-term cigarette smoke exposure in animal model
    (2021) JUNQUEIRA, Jader Joel Machado; LOURENCO, Juliana Dias; SILVA, Kaique Rodrigues da; JORGETTI, Vanda; VIEIRA, Rodolfo P.; ARAUJO, Amanda Aparecida de; ANGELIS, Katia De; CORREIA, Aristides Tadeu; ALVES, Luan Henrique Vasconcelos; TIBERIO, Iolanda de Fatima Lopes Calvo; BARBOSA, Alexandre Povoa; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos
    Introduction: Clinical and experimental studies have been attesting the deleterious effects of smoking mainly due to the stimulation of osteoclastogenesis and inhibition of osteoblastogenesis. However the physiological mechanisms that can explain these changes are not fully understood. Aims: To evaluate the trabecular bone resorption effect caused by long-term exposure to cigarette smoke and the action of cytokines and reactive oxygen species involved in this process. Methods: Sixty young adult C57BL/6 mice were allocated to two groups: control, 30 animals exposed to filtered air for 1, 3 and 6 months; and smoke, 30 animals exposed to cigarette smoke for 1, 3 and 6 months. Femoral and tibial extraction was performed to evaluate the bone mineral matrix, bone cytokines (Receptor activator of nuclear factor-kappa B ligand -RANKL and Osteoprotegerin -OPG) and oxidative stress markers (Thiobarbituric acid reactive substances -Tbars). Results: Exposure to cigarette smoke (CS) generated changes in bone structural parameters in the 6th month of follow-up, demonstrating an evident bone loss; reduction in OPG/RANKL ratio from the 3rd month on and increase in Tbars in the first month, both closely related to the increase in osteoclastogenic activity and bone resorption. Conclusion: These findings reinforce the importance of CS-induced oxidative stress in bone compromising the bone cellular activities with a consequent impairment in bone turn over and changes in bone structure.
  • article 10 Citação(ões) na Scopus
    Stress amplifies lung tissue mechanics, inflammation and oxidative stress induced by chronic inflammation
    (2012) REIS, Fabiana G.; MARQUES, Ricardo H.; STARLING, Claudia M.; ALMEIDA-REIS, Rafael; VIEIRA, Rodolfo P.; CABIDO, Claudia T.; SILVA, Luiz Fernando F.; LANCAS, Tatiana; DOLHNIKOFF, Marisa; MARTINS, Milton A.; LEICK-MALDONADO, Edna A.; PRADO, CarlaM.; TIBERIO, Iolanda F. L. C.
    Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.
  • article 0 Citação(ões) na Scopus
    Smoking induces increased apoptosis in osteoblasts: changes in bone matrix organic components
    (2023) KOHLER, Julia Benini; SILVA, Alex Ferreira da; FARIAS, Walleson Alves; SAMPAIO, Barbara Fialho Carvalho; NEVES, Marco Aurelio Silveiro; LIMA, Leandro Gregorut; LOURENCO, Juliana Dias; MOREIRA, Alyne Riani; BARBOSA, Alexandre Povoa; TIBERIO, Iolanda de Fatima Lopes Calvo; TEODORO, Walcy Rosolia; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos
    Clinical studies demonstrate the impact of smoking on bone tissue fragility and higher incidence of fractures. However, it is not totally understood which physiological mechanisms could be involved in these events. Previously, we showed important changes in bone tissue components in experimental model of cigarette smoke (CS) exposure. CS exposure induces worsening in bone mineralization and a decrease in collagen type I deposition, leading to bone fragility. Considering that the majority of clinical studies described bone structural changes by radiographic images, in this study we performed analyses ""in situ"" using tissue samples from smokers, former smokers and non-smokers to better understand how the increase in inflammatory mediators induced by smoking exposure could interfere in bone cells activity leading bone structural changes. We observed increased levels of IL-1 beta, IL-6 and TNF-alpha in bone tissue homogenates with a concomitant increase in osteoblast apoptosis in smokers and former smokers compared with non-smokers. Histological changes in both smokers and former smokers were characterized by reduction in collagen type I. Only in smokers, it was observed decrease in trabecular area, suggesting increased bone resorption and increase in collagen type V. These results showed that osteoblasts apoptosis in association with increased bone resorption leads bone structural changes in smokers.
  • conferenceObject
    Plant proteinase from Bauhinia bauhinioides Kallikrein inhibitor (BbKI) attenuates mechanics, inflammation and remodelling induced by elastase in mice
    (2012) OLIVEIRA, Bruno Martins; ALMEIDA-REIS, Rafael; THEODORO, Osmar A.; OLIVA, Leandro V.; RODRIGUES, Daniel Flisch; PINHEIRO, Nathalia; OLIVA, Maria L. V.; PRADO, Carla M.; MARTINS, Milton M.; TIBERIO, Iolanda F. L. C.
  • conferenceObject
    Green Areas and PM2,5 exposure could be associated with Asthma and COPD?
    (2023) ALMEIDA, Francine Maria; MOREIRA, Tiana Carla Lopes; OLIVEIRA, Lucas Miranda; RIGHETTI, Renato Fraga; LOPES, Fernanda Degobbi Tenorio Quirino Santos; ALENCAR, Airlane P.; GOUVEIA, Nelson; MAUAD, Thais; LOTUFO, Paulo A.; BENSENOR, Isabela; SANTOS, Itamar Souza; TIBERIO, Iolanda Fatima Lopes Calvo
  • article 8 Citação(ões) na Scopus
    Inactivation of capsaicin-sensitive nerves reduces pulmonary remodeling in guinea pigs with chronic allergic pulmonary inflammation
    (2011) PRADO, C. M.; ROCHA, G. Z. da; LEICK-MALDONADO, E. A.; STARLING, C. M.; CAPELOZZI, V. L.; MARTINS, M. A.; TIBERIO, I. F. L. C.
    Pulmonary remodeling is an important feature of asthma physiopathology that can contribute to irreversible changes in lung function. Although neurokinins influence lung inflammation, their exact role in the extracellular matrix (ECM) remodeling remains to be determined. Our objective was to investigate whether inactivation of capsaicin-sensitive nerves modulates pulmonary ECM remodeling in animals with chronic lung inflammation. After 14 days of capsaicin (50 mg/kg, sc) or vehicle administration, male Hartley guinea pigs weighing 250-300 g were submitted to seven inhalations of increasing doses of ovalbumin (1, 2.5, and 5 mg/mL) or saline for 4 weeks. Seventy-two hours after the seventh inhalation, animals were anesthetized and mechanically ventilated and the lung mechanics and collagen and elastic fiber content in the airways, vessels and lung parenchyma were evaluated. Ovalbumin-exposed animals presented increasing collagen and elastic fiber content, respectively, in the airways (9.2 +/- 0.9; 13.8 +/- 1.2), vessels (19.8 +/- 0.8; 13.4 +/- 0.5) and lung parenchyma (18.8 +/- 1.1; 25.31 +/- 1.1) compared to control (P < 0.05). Capsaicin treatment reduced collagen and elastic fibers, respectively, in airways (1.7 +/- 1.1; 7.9 +/- 1.5), vessels (2.8 +/- 1.1; 4.4 +/- 1.1) and lung tissue (12.46 +/- 1.0; 15.05 +/- 1.5) of ovalbumin-exposed animals (P < 0.05). These findings were positively correlated with lung mechanical responses to antigenic challenge (P < 0.05). In conclusion, inactivation of capsaicin-sensitive nerve fibers reduces pulmonary remodeling, particularly collagen and elastic fibers, which contributes to the attenuation of pulmonary functional parameters.