Biomechanical Properties and Microstructural Analysis of the Human Nonaneurysmal Aorta as a Function of Age, Gender and Location: An Autopsy Study

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
KARGER
Citação
JOURNAL OF VASCULAR RESEARCH, v.52, n.4, p.257-264, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: The biomechanical failure properties and histological composition of the human nonaneurysmal aorta were studied. Methods: Twenty-six human aortas were harvested from fresh cadavers at autopsy. A total of 153 circumferentially oriented strips were obtained from the aortas for biomechanical and histological studies. Results: The failure load (6.18 +/- 2.03 vs. 4.85 +/- 2.04 N; p = 0.001), failure tension (19.88 +/- 9.05 vs. 14.53 +/- 7 N/cm; p = 0.001), failure strain (0.66 +/- 0.31 vs. 0.49 +/- 0.25; p = 0.003) and amount of elastic fibers (19.39 +/- 15.57 vs. 14.06 +/- 9.5%; p = 0.011) were all significantly higher for the thoracic than the abdominal aorta. There was a significant negative correlation between age and failure load (R = -0.35; p < 0.0001), failure stress (R = -0.63; p < 0.0001), failure tension (R = -0.52; p < 0.0001) and failure strain (R = -0.8; p < 0.0001). Male aortas had a higher failure load and failure tension than female aortas. Conclusion: The thoracic aorta has a higher strength and elasticity than the abdominal aorta. The elderly have weaker and stiffer aortas than the young. Male aortas are stronger than female aortas. (C) 2016 S. Karger AG, Basel
Palavras-chave
Biomechanics, Elasticity, Histology, Human aorta, Mechanical stress
Referências
  1. Assoul N, 2008, J BIOMECH, V41, P2227, DOI 10.1016/j.jbiomech.2008.04.017
  2. HE CM, 1994, J VASC SURG, V20, P6
  3. Thubrikar MJ, 2001, J MED ENG TECHNOL, V25, P133, DOI 10.1080/03091900110057806
  4. Di Martino ES, 2006, J VASC SURG, V43, P570, DOI 10.1016/j.jvs.2005.10.072
  5. MOHAN D, 1982, J BIOMECH, V15, P887, DOI 10.1016/0021-9290(82)90055-0
  6. Raghavan ML, 2011, J BIOMECH, V44, P2501, DOI 10.1016/j.jbiomech.2011.06.004
  7. SONESSON B, 1994, J VASC SURG, V20, P959
  8. Vorp DA, 1996, ANN NY ACAD SCI, V800, P274, DOI 10.1111/j.1749-6632.1996.tb33330.x
  9. Hallock P, 1937, J CLIN INVEST, V16, P595, DOI 10.1172/JCI100886
  10. DINGEMANS KP, 1981, VIRCHOWS ARCH A, V392, P199, DOI 10.1007/BF00430821
  11. Raghavan ML, 1996, ANN BIOMED ENG, V24, P573, DOI 10.1007/BF02684226
  12. Raghavan ML, 2006, J BIOMECH, V39, P3010, DOI 10.1016/j.jbiomech.2005.10.021
  13. Sincos IR, 2013, J VASC SURG, V58, P1644, DOI 10.1016/j.jvs.2013.02.005
  14. SCHLATMANN TJM, 1977, AM J CARDIOL, V39, P13, DOI 10.1016/S0002-9149(77)80004-0
  15. Astrand H, 2005, J VASC SURG, V42, P926, DOI 10.1016/j.jvs.2005.07.010
  16. WOLINSKY H, 1964, CIRC RES, V14, P400
  17. Monteiro JAT, 2014, J VASC SURG, V59, P1393, DOI 10.1016/j.jvs.2013.04.064
  18. LANNE T, 1992, EUR J VASCULAR SURG, V6, P178, DOI 10.1016/S0950-821X(05)80237-3
  19. Xiong J, 2008, J VASC SURG, V48, P189, DOI 10.1016/j.jvs.2007.12.053
  20. BAXTER BT, 1992, J VASC SURG, V16, P192
  21. Haskett D, 2010, BIOMECH MODEL MECHAN, V9, P725, DOI 10.1007/s10237-010-0209-7
  22. SHEREBRIN MH, 1989, CAN J PHYSIOL PHARM, V67, P871
  23. Norman PE, 2007, CIRCULATION, V115, P2865, DOI 10.1161/CIRCULATIONAHA.106.671859
  24. Benvenuti Luiz Alberto, 2005, Clinics (Sao Paulo), V60, P355, DOI 10.1590/S1807-59322005000500002
  25. HALLORAN BG, 1995, J SURG RES, V59, P17, DOI 10.1006/jsre.1995.1126
  26. Tsamis A, 2013, J R SOC INTERFACE, V10, P1
  27. Vande Geest Jonathan P, 2006, Ann N Y Acad Sci, V1085, P400, DOI 10.1196/annals.1383.048