Loss of mTORC2 Activity in Neutrophils Impairs Fusion of Granules and Affects Cellular Metabolism Favoring Increased Bacterial Burden in Sepsis

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC IMMUNOLOGISTS
Autores
BREDA, Cristiane Naffah de Souza
BREDA, Leandro Carvalho Dantas
CARVALHO, Larissa Anastacio da Costa
AMANO, Mariane Tami
TERRA, Fernanda Fernandes
SILVA, Reinaldo Correia
FRAGAS, Matheus Garcia
FORNI, Maria Fernanda
FONSECA, Monique Thais Costa
Citação
JOURNAL OF IMMUNOLOGY, v.207, n.2, p.626-639, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Delta/Delta) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.
Palavras-chave
Referências
  1. ALBRICH JM, 1982, FEBS LETT, V144, P157, DOI 10.1016/0014-5793(82)80591-7
  2. Alves-Filho J. C., 2006, Endocrine Metabolic & Immune Disorders-Drug Targets, V6, P151
  3. Bao Y, 2015, J CELL BIOL, V210, P1153, DOI 10.1083/jcb.201503066
  4. Bender T, 2015, EMBO J, V34, P911, DOI 10.15252/embj.201490197
  5. Brinkmann V, 2004, SCIENCE, V303, P1532, DOI 10.1126/science.1092385
  6. Bylund J, 2010, FREE RADICAL BIO MED, V49, P1834, DOI 10.1016/j.freeradbiomed.2010.09.016
  7. Calderon-Santiago M, 2013, J PHARMACEUT BIOMED, V74, P178, DOI 10.1016/j.jpba.2012.10.029
  8. Carvalho LAC, 2018, REDOX BIOL, V16, P179, DOI 10.1016/j.redox.2018.02.020
  9. Chen J, 2010, BLOOD, V115, P4237, DOI 10.1182/blood-2009-11-255323
  10. Chen XQ, 2016, NAT PROTOC, V11, P1219, DOI 10.1038/nprot.2016.062
  11. Cheng SC, 2016, NAT IMMUNOL, V17, P406, DOI 10.1038/ni.3398
  12. Csepregi JZ, 2018, J IMMUNOL, V201, P3793, DOI 10.4049/jimmunol.1701803
  13. Breda CND, 2019, REDOX BIOL, V26, DOI 10.1016/j.redox.2019.101255
  14. de Souza CN, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01849
  15. Diz-Munoz A, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002474
  16. Dong GY, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01088
  17. Douda DN, 2014, BLOOD, V123, P597, DOI 10.1182/blood-2013-09-526707
  18. Faurschou M, 2003, MICROBES INFECT, V5, P1317, DOI 10.1016/j.micinf.2003.09.008
  19. Festuccia WT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095432
  20. Fossati G, 2003, J IMMUNOL, V170, P1964, DOI 10.4049/jimmunol.170.4.1964
  21. Freeman SA, 2014, IMMUNOL REV, V262, P193, DOI 10.1111/imr.12212
  22. Fuchs TA, 2007, J CELL BIOL, V176, P231, DOI 10.1083/jcb.200606027
  23. Futosi K, 2013, INT IMMUNOPHARMACOL, V17, P638, DOI 10.1016/j.intimp.2013.06.034
  24. Ganz T, 2003, BLOOD, V101, P2388, DOI 10.1182/blood-2002-07-2319
  25. Gomez-Cambronero J, 2003, FEBS LETT, V550, P94, DOI 10.1016/S0014-5793(03)00828-7
  26. Goncalves GM, 2010, SHOCK, V34, P22, DOI 10.1097/SHK.0b013e3181e7e69e
  27. Granger JI, 2013, PSYCHONEUROENDOCRINO, V38, P1047, DOI 10.1016/j.psyneuen.2012.10.010
  28. Gray LR, 2014, CELL MOL LIFE SCI, V71, P2577, DOI 10.1007/s00018-013-1539-2
  29. Haidinger M, 2010, J IMMUNOL, V185, P3919, DOI 10.4049/jimmunol.1000296
  30. Hampson P, 2017, ANN SURG, V265, P1241, DOI 10.1097/SLA.0000000000001807
  31. Hannigan MO, 2004, CURR TOP MICROBIOL, V282, P165
  32. He Y, 2013, MOL BIOL CELL, V24, P3369, DOI 10.1091/mbc.E13-07-0405
  33. Heidrich C, 2002, J BACTERIOL, V184, P6093, DOI 10.1128/JB.184.22.6093-6099.2002
  34. Ho KKY, 2018, J ENDOCRINOL, V238, pR185, DOI 10.1530/JOE-18-0240
  35. Irahara T, 2018, J SURG RES, V227, P44, DOI 10.1016/j.jss.2018.01.021
  36. Iskander KN, 2013, PHYSIOL REV, V93, P1247, DOI 10.1152/physrev.00037.2012
  37. Klebanoff SJ, 2013, J LEUKOCYTE BIOL, V93, P185, DOI 10.1189/jlb.0712349
  38. Kolaczkowska E, 2013, NAT REV IMMUNOL, V13, P159, DOI 10.1038/nri3399
  39. Kramer PA, 2014, REDOX BIOL, V2, P206, DOI 10.1016/j.redox.2013.12.026
  40. Kumar S, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02099
  41. LI CH, 1993, PATTERN RECOGN, V26, P617, DOI 10.1016/0031-3203(93)90115-D
  42. Liu LH, 2010, DEV CELL, V19, P845, DOI 10.1016/j.devcel.2010.11.004
  43. Matsumoto H, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-32275-8
  44. McInturff AM, 2012, BLOOD, V120, P3118, DOI 10.1182/blood-2012-01-405993
  45. Monchois V, 2001, J BIOL CHEM, V276, P18437, DOI 10.1074/jbc.M010297200
  46. Nordenfelt P, 2011, J LEUKOCYTE BIOL, V90, P271, DOI 10.1189/jlb.0810457
  47. Palmer LJ, 2012, CLIN EXP IMMUNOL, V167, P261, DOI 10.1111/j.1365-2249.2011.04518.x
  48. Papayannopoulos V, 2010, J CELL BIOL, V191, P677, DOI 10.1083/jcb.201006052
  49. Parker H, 2012, J LEUKOCYTE BIOL, V91, P369, DOI 10.1189/jlb.0711387
  50. Phua J, 2013, CRIT CARE, V17, DOI 10.1186/cc12896
  51. Pullar JM, 2000, IUBMB LIFE, V50, P259, DOI 10.1080/15216540051080958
  52. Ragab F., 2001, CRIT CARE, V5, P134
  53. Ragland SA, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006512
  54. Robinson KM, 2006, P NATL ACAD SCI USA, V103, P15038, DOI 10.1073/pnas.0601945103
  55. ROZENBERGARSKA M, 1985, INFECT IMMUN, V50, P852, DOI 10.1128/IAI.50.3.852-859.1985
  56. Sadiku P, 2019, EMBO REP, V20, DOI 10.15252/embr.201847388
  57. Schmitz F, 2008, EUR J IMMUNOL, V38, P2981, DOI 10.1002/eji.200838761
  58. Shimada J, 2008, BMC INFECT DIS, V8, DOI 10.1186/1471-2334-8-134
  59. Singer M, 2016, JAMA-J AM MED ASSOC, V315, P801, DOI 10.1001/jama.2016.0287
  60. Stanton RC, 2012, IUBMB LIFE, V64, P362, DOI 10.1002/iub.1017
  61. Tavares-Murta BM, 2002, CRIT CARE MED, V30, P1056, DOI 10.1097/00003246-200205000-00017
  62. Van Raam BJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002013
  63. Walmsley SR, 2014, BLOOD, V123, P2753, DOI 10.1182/blood-2014-03-560409
  64. Weichhart T, 2015, NAT REV IMMUNOL, V15, P599, DOI 10.1038/nri3901
  65. Zhou YY, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09234-6