First Report of Wenzhou sobemo-like virus 4 in Aedes albopictus (Diptera: Culicidae) in Latin America

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
VIRUSES-BASEL, v.14, n.11, article ID 2341, 8p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of Sao Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.
Palavras-chave
insect-specific viruses, Aedes albopictus, vectors, metagenomics
Referências
  1. Agboli E, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11090873
  2. Altinli M, 2021, FRONT CELL INFECT MI, V11, DOI 10.3389/fcimb.2021.694020
  3. Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389
  4. Atoni E, 2019, REV MED VIROL, V29, DOI 10.1002/rmv.2079
  5. Batson J, 2021, ELIFE, V10, DOI 10.7554/eLife.68353
  6. Birnberg L, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12030274
  7. Calisher CH, 2018, ANNU REV ENTOMOL, V63, P87, DOI 10.1146/annurev-ento-020117-043033
  8. Calle-Tobon A, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0263143
  9. Claro I.M., 2021, WELLCOME OPEN RES, V6, P241, DOI [10.12688/wellcomeopenres.17170.1, DOI 10.12688/WELLCOMEOPENRES.17170.1]
  10. Erasmus JH, 2018, J VIROL, V92, DOI 10.1128/JVI.01274-17
  11. Ferreira-de-Lima VH, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60870-1
  12. Ferreira-de-Lima VH, 2020, ACTA TROP, V205, DOI 10.1016/j.actatropica.2020.105386
  13. Gomez M, 2022, PARASITE VECTOR, V15, DOI 10.1186/s13071-022-05401-9
  14. Grard G, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002681
  15. He WQ, 2021, PARASITE VECTOR, V14, DOI 10.1186/s13071-021-04922-z
  16. Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436
  17. Kenney JL, 2014, J GEN VIROL, V95, P2796, DOI 10.1099/vir.0.068031-0
  18. Konstantinidis K, 2022, VIRUS EVOL, V8, DOI 10.1093/ve/veac036
  19. Kubacki J, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12090929
  20. Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300
  21. Paupy C, 2009, MICROBES INFECT, V11, P1177, DOI 10.1016/j.micinf.2009.05.005
  22. Rau J, 2022, PARASITOL RES, V121, P2587, DOI 10.1007/s00436-022-07576-7
  23. Romo H, 2018, EMERG MICROBES INFEC, V7, DOI 10.1038/s41426-018-0180-4
  24. Shi CY, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00640-20
  25. Shi M, 2016, NATURE, V540, P539, DOI 10.1038/nature20167