Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families

Carregando...
Imagem de Miniatura
Citações na Scopus
16
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
SCIENTIFIC REPORTS, v.7, article ID 17262, 18p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Protein disulfide isomerases (PDIs) support endoplasmic reticulum redox protein folding and cell-surface thiol-redox control of thrombosis and vascular remodeling. The family prototype PDIA1 regulates NADPH oxidase signaling and cytoskeleton organization, however the related underlying mechanisms are unclear. Here we show that genes encoding human PDIA1 and its two paralogs PDIA8 and PDIA2 are each flanked by genes encoding Rho guanine-dissociation inhibitors (GDI), known regulators of RhoGTPases/cytoskeleton. Evolutionary histories of these three microsyntenic regions reveal their emergence by two successive duplication events of a primordial gene pair in the last common vertebrate ancestor. The arrangement, however, is substantially older, detectable in echinoderms, nematodes, and cnidarians. Thus, PDI/RhoGDI pairing in the same transcription orientation emerged early in animal evolution and has been largely maintained. PDI/RhoGDI pairs are embedded into conserved genomic regions displaying common cis-regulatory elements. Analysis of gene expression datasets supports evidence for PDI/RhoGDI coexpression in developmental/inflammatory contexts. PDIA1/RhoGDIa were co-induced in endothelial cells upon CRISP-R-promoted transcription activation of each pair component, and also in mouse arterial intima during flow-induced remodeling. We provide evidence for physical interaction between both proteins. These data support strong functional links between PDI and RhoGDI families, which likely maintained PDI/RhoGDI microsynteny along > 800-million years of evolution.
Palavras-chave
Referências
  1. Abascal F, 2005, BIOINFORMATICS, V21, P2104, DOI 10.1093/bioinformatics/bti263
  2. Aken BL, 2016, DATABASE-OXFORD, DOI 10.1093/database/baw093
  3. Akiva P, 2006, GENOME RES, V16, P30, DOI 10.1101/gr.4137606
  4. Amores A, 2011, GENETICS, V188, P799, DOI 10.1534/genetics.111.127324
  5. Bagadia M, 2016, GENOME BIOL EVOL, V8, P946, DOI 10.1093/gbe/evw050
  6. Bateman A, 2017, NUCLEIC ACIDS RES, V45, pD158, DOI 10.1093/nar/gkw1099
  7. Blumenthal Thomas, 2004, Briefings in Functional Genomics & Proteomics, V3, P199, DOI 10.1093/bfgp/3.3.199
  8. Boulter E, 2010, NAT CELL BIOL, V12, P477, DOI 10.1038/ncb2049
  9. Braasch I, 2016, NAT GENET, V48, P427, DOI 10.1038/ng.3526
  10. Brymora A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050879
  11. Bulger M, 1999, P NATL ACAD SCI USA, V96, P5129, DOI 10.1073/pnas.96.9.5129
  12. Cai WW, 2010, BIOSCI BIOTECH BIOCH, V74, P2050, DOI 10.1271/bbb.100349
  13. Cameron RA, 2009, NUCLEIC ACIDS RES, V37, pD750, DOI 10.1093/nar/gkn887
  14. Chen PY, 2007, BMC MOL BIOL, V8, DOI 10.1186/1471-2199-8-2
  15. Chiu J, 2015, SEMIN THROMB HEMOST, V41, P765, DOI 10.1055/s-0035-1564047
  16. Lopez MD, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010654
  17. Dehal P, 2005, PLOS BIOL, V3, P1700, DOI 10.1371/journal.pbio.0030314
  18. DiMaio TA, 2016, EXP CELL RES, V340, P159, DOI 10.1016/j.yexcr.2015.11.015
  19. Dominguez AA, 2016, NAT REV MOL CELL BIO, V17, DOI 10.1038/nrm.2015.2
  20. Dusterhoft S, 2013, J AM CHEM SOC, V135, P5776, DOI 10.1021/ja400340u
  21. Dunham I, 2012, NATURE, V489, P57, DOI 10.1038/nature11247
  22. Ebersberger I, 2014, NUCLEIC ACIDS RES, V42, P1509, DOI 10.1093/nar/gkt1137
  23. Ehrlich J, 1997, GENETICS, V147, P289
  24. Felberbaum-Corti M, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001144
  25. Fernandes DC, 2009, ARCH BIOCHEM BIOPHYS, V484, P197, DOI 10.1016/j.abb.2009.01.022
  26. Fiedler J, 2015, J AM COLL CARDIOL, V66, P2005, DOI 10.1016/j.jacc.2015.07.081
  27. Finn RD, 2016, NUCLEIC ACIDS RES, V44, pD279, DOI 10.1093/nar/gkv1344
  28. Finn RD, 2015, NUCLEIC ACIDS RES, V43, pW30, DOI 10.1093/nar/gkv397
  29. Flaumenhaft R, 2016, BLOOD, V128, P893, DOI 10.1182/blood-2016-04-636456
  30. Flaumenhaft R, 2015, ARTERIOSCL THROM VAS, V35, P16, DOI 10.1161/ATVBAHA.114.303410
  31. Furie B, 2014, CIRC RES, V114, P1162, DOI 10.1161/CIRCRESAHA.114.301808
  32. Galligan JJ, 2012, HUM GENOMICS, V6, DOI 10.1186/1479-7364-6-6
  33. Garcia-Fernandez J, 2005, NAT REV GENET, V6, P881, DOI 10.1038/nrg1723
  34. Garcia-Mata R, 2011, NAT REV MOL CELL BIO, V12, P493, DOI 10.1038/nrm3153
  35. Gerstein MB, 2012, NATURE, V489, P91, DOI 10.1038/nature11245
  36. GRIENDLING KK, 1991, J BIOL CHEM, V266, P15498
  37. Heckler EJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143523
  38. Hendrickx A, 2009, CHEM BIOL, V16, P365, DOI 10.1016/j.chembiol.2009.02.012
  39. Huang CC, 2009, BMC MOL BIOL, V10, DOI 10.1186/1471-2199-10-67
  40. Hurst LD, 2004, NAT REV GENET, V5, P299, DOI 10.1038/nrg1319
  41. Hurst LD, 2002, TRENDS GENET, V18, P604, DOI 10.1016/S0168-9525(02)02813-5
  42. Irimia M, 2013, TRENDS GENET, V29, P521, DOI 10.1016/j.tig.2013.05.008
  43. Irimia M, 2012, GENOME RES, V22, P2356, DOI 10.1101/gr.139725.112
  44. Kanai S, 1998, J MOL EVOL, V47, P200, DOI 10.1007/PL00006377
  45. Katoh K, 2008, BRIEF BIOINFORM, V9, P286, DOI 10.1093/bib/bbn013
  46. Kent WJ, 2002, GENOME RES, V12, P996, DOI 10.1101/gr.229102
  47. Kim N, 2006, NUCLEIC ACIDS RES, V34, pD21, DOI 10.1093/nar/gkj019
  48. Kober FX, 2013, J BIOL CHEM, V288, P2029, DOI 10.1074/jbc.M112.410522
  49. Konermann S, 2015, NATURE, V517, P583, DOI 10.1038/nature14136
  50. Kurian L, 2015, CIRCULATION, V131, P1278, DOI 10.1161/CIRCULATIONAHA.114.013303
  51. Kustatscher Georg, 2017, Mol Syst Biol, V13, P937, DOI 10.15252/msb.20177548
  52. La Russa MF, 2015, MOL CELL BIOL, V35, P3800, DOI 10.1128/MCB.00512-15
  53. Larkin B, 2017, J IMMUNOL, V199, P397, DOI 10.4049/jimmunol.1601999
  54. Lee JM, 2003, GENOME RES, V13, P875, DOI 10.1101/gr.737703
  55. Longenecker KL, 2001, ACTA CRYSTALLOGR D, V57, P679, DOI 10.1107/S0907444901003122
  56. Louis A, 2013, NUCLEIC ACIDS RES, V41, pD700, DOI 10.1093/nar/gks1156
  57. Lu P, 2016, SCI CHINA LIFE SCI, V59, P1093, DOI 10.1007/s11427-016-0194-6
  58. Maeder ML, 2013, NAT METHODS, V10, P977, DOI [10.1038/nmeth.2598, 10.1038/NMETH.2598]
  59. Mahr S, 2006, AM J HUM GENET, V78, P793, DOI 10.1086/503849
  60. Maleszewska M, 2016, ANGIOGENESIS, V19, P9, DOI 10.1007/s10456-015-9485-2
  61. McArthur AG, 2001, MOL BIOL EVOL, V18, P1455, DOI 10.1093/oxfordjournals.molbev.a003931
  62. Michalak P, 2008, GENOMICS, V91, P243, DOI 10.1016/j.ygeno.2007.11.002
  63. Michel M, 2017, MOL SYST BIOL, V13, DOI 10.15252/msb.20167507
  64. Montavon T, 2011, CELL, V147, P1132, DOI 10.1016/j.cell.2011.10.023
  65. Muffato M, 2010, BIOINFORMATICS, V26, P1119, DOI 10.1093/bioinformatics/btq079
  66. Nam D, 2009, AM J PHYSIOL-HEART C, V297, pH1535, DOI 10.1152/ajpheart.00510.2009
  67. NCBIResourceCoordinators, 2017, Nucleic Acids Res, V45, pD12, DOI 10.1093/nar/gkw1071
  68. Owens GK, 2004, PHYSIOL REV, V84, P767, DOI 10.1152/physrev.00041.2003
  69. Paes AMD, 2011, J LEUKOCYTE BIOL, V90, P799, DOI 10.1189/jlb.0610324
  70. Papantonis A, 2012, EMBO J, V31, P4404, DOI 10.1038/emboj.2012.288
  71. Pescatore LA, 2012, J BIOL CHEM, V287, P29290, DOI 10.1074/jbc.M112.394551
  72. Prakash T, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013284
  73. Santos CXC, 2009, J LEUKOCYTE BIOL, V86, P989, DOI 10.1189/jlb.0608354
  74. Seuter S, 2016, NUCLEIC ACIDS RES, V44, P4090, DOI 10.1093/nar/gkv1519
  75. Sheikh AQ, 2014, CELL REP, V6, P809, DOI 10.1016/j.celrep.2014.01.042
  76. Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201
  77. Simakov O, 2017, DEV BIOL, V427, P179, DOI 10.1016/j.ydbio.2016.11.012
  78. Singh K, 2008, P NATL ACAD SCI USA, V105, P1522, DOI 10.1073/pnas.0707359105
  79. Moretti AIS, 2017, ARCH BIOCHEM BIOPHYS, V617, P106, DOI 10.1016/j.abb.2016.11.007
  80. Sobierajska K, 2014, J BIOL CHEM, V289, P5758, DOI 10.1074/jbc.M113.479477
  81. Song QL, 2016, EXP EYE RES, V151, P107, DOI 10.1016/j.exer.2016.08.004
  82. Spitz F, 2005, NAT GENET, V37, P889, DOI 10.1038/ng1597
  83. Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033
  84. Stelzer G., 2016, CURR PROTOC BIOINFOR, V54, P3031
  85. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  86. Ugolev Y, 2008, J BIOL CHEM, V283, P22257, DOI 10.1074/jbc.M800734200
  87. Ugolev Y, 2006, J BIOL CHEM, V281, P19204, DOI 10.1074/jbc.M600042200
  88. Wan CH, 2015, NATURE, V525, P339, DOI 10.1038/nature14877
  89. Wang J, 2013, NUCLEIC ACIDS RES, V41, pD171, DOI 10.1093/nar/gks1221
  90. Willems SH, 2010, BIOCHEM J, V428, P439, DOI 10.1042/BJ20100179
  91. Wooten EC, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008830