Precision medicine: The microbiome and metabolome

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorFAINTUCH, J.
dc.contributor.authorFAINTUCH, J. J.
dc.date.accessioned2023-02-09T19:57:43Z
dc.date.available2023-02-09T19:57:43Z
dc.date.issued2019
dc.description.abstractThe microbiome gap, between just data accumulation and theoretical speculations from one side and clinical benefits to the patient from the other, is being rapidly filled. The microbiome is a crucial facet of the individual response to inflammation, cancer, metabolic and degenerative diseases, immunological conditions, neuropsychiatric pathology, diet, xenobiotic processing, surgical interventions, and even environmental stress. With the determination of key microorganisms, enzymes, metabolites, and pathways, advances are rapidly accumulating. Multilayer diagnostic and therapeutical algorithms, bedside microbiomics and metabolomics, new-generation probiotics and postbiotics, phage therapy, and patient-specific fecal transplantation are the foundations of the new era. It is not a distant vision anymore. Many applications are real and ready for clinical use. © 2019 Elsevier Inc. All rights reserved.
dc.identifier.citationFaintuch, J.; Faintuch, J. J.. Precision medicine: The microbiome and metabolome. In: . MICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS: ELSEVIER, 2019. p.435-449.
dc.identifier.doi10.1016/B978-0-12-815249-2.00046-4
dc.identifier.isbn9780128152492; 9780128152508
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/51120
dc.language.isoeng
dc.publisherELSEVIER
dc.relation.ispartofMICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS
dc.rightsrestrictedAccess
dc.rights.holderCopyright ELSEVIER
dc.subjectLipidome
dc.subjectMetabolome
dc.subjectMicrobiome
dc.subjectMolecular pathology
dc.subjectPersonalized medicine
dc.subjectPrecision medicine
dc.subjectProteome
dc.titlePrecision medicine: The microbiome and metabolome
dc.typebookPart
dc.type.categorybook chapter
dc.type.versionpublishedVersion
dspace.entity.typePublication
hcfmusp.citation.scopus4
hcfmusp.contributor.author-fmusphcJOEL FAINTUCH
hcfmusp.contributor.author-fmusphcJACOB JEHUDA FAINTUCH
hcfmusp.description.beginpage435
hcfmusp.description.endpage449
hcfmusp.origemSCOPUS
hcfmusp.origem.scopus2-s2.0-85082467465
hcfmusp.relation.referenceStranger, B.E., Brigham, L.E., Hasz, R., Hunter, M., Johns, C., Johnson, M., Kopen, G., Montgomery, S.B., Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease (2017) Nat Genet, 49, pp. 1664-1670
hcfmusp.relation.referenceKashyap, P.C., Chia, N., Nelson, H., Segal, E., Elinav, E., Microbiome at the frontier of personalized medicine (2017) Mayo Clin Proc, 92 (12), pp. 1855-1864. , December
hcfmusp.relation.referencePeters, J.H., Genetic factors in relation to drugs (1968) Annu Rev Pharmacol, 8, pp. 427-452
hcfmusp.relation.referenceKalow, W., Pharmacogenetics and pharmacogenomics: Origin, status, and the hope for personalized medicine (2006) Pharmacogenomics J, 6, pp. 162-165
hcfmusp.relation.referenceThomson, W., Tait, P.G., (1882) Mathematical and physical papers, , Cambridge University Press UK
hcfmusp.relation.referenceDietel, M., Jöhrens, K., Laffert, M.V., Hummel, M., Bläker, H., Pfitzner, B.M., Lehmann, A., Anagnostopoulos, I.A., 2015 update on predictive molecular pathology and its role in targeted cancer therapy: A review focussing on clinical relevance (2015) Cancer Gene Ther, 22, pp. 417-430
hcfmusp.relation.referenceBeger, R.D., Dunn, W., Schmidt, M.A., Gross, S.S., Kirwan, J.A., Cascante, M., Brennan, L., Kaddurah-Daouk, R., Metabolomics enables precision medicine: “a white paper, community perspective” (2016) Metabolomics, 12, p. 149
hcfmusp.relation.referenceBoursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C.D., Diehl, A.M., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota (2016) Hepatology, 63, pp. 764-775
hcfmusp.relation.referenceLoomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., Nelson, K.E., Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease (2017) Cell Metab, 25, pp. 1054-1062. , e5
hcfmusp.relation.referenceNakahara, T., Hyogo, H., Ono, A., Nagaoki, Y., Kawaoka, T., Miki, D., Tsuge, M., Chayama, K., Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease (2018) J Gastroenterol, 53, pp. 269-280
hcfmusp.relation.referenceAleman, J.O., Eusebi, L.H., Ricciardiello, L., Patidar, K., Sanyal, A.J., Holt, P.R., Mechanisms of obesity-induced gastrointestinal neoplasia (2014) Gastroenterology, 146, pp. 357-373
hcfmusp.relation.referencePuri, P., Liangpunsakul, S., Christensen, J.E., Shah, V.H., Kamath, P.S., Gores, G.J., Walker, S., Sanyal, A.J., The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis (2018) Hepatology, 67, pp. 1284-1302. , October 30
hcfmusp.relation.referenceJie, Z., Xia, H., Zhong, S.L., Feng, Q., Li, S., Liang, S., Zhong, H., Kristiansen, K., The gut microbiome in atherosclerotic cardiovascular disease (2017) Nat Commun, 8, p. 845
hcfmusp.relation.referencePasolli, E., Truong, D.T., Malik, F., Waldron, L., Segata, N., Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights (2016) PLoS Comput Biol, 12, p. e1004977
hcfmusp.relation.referenceBluemel, S., Williams, B., Knight, R., Schnabl, B., Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota (2016) Am J Physiol Gastrointest Liver Physiol, 311, pp. G1018-G1036
hcfmusp.relation.referenceJacobs, L.R., Relationship between dietary fiber and cancer: Metabolic, physiologic, and cellular mechanisms (1986) Proc Exp Biol Med, 183, pp. 299-310
hcfmusp.relation.referenceBurns, M.B., Lynch, J., Starr, T.K., Knights, D., Blekhman, R., Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment (2015) Genome Med, 7, p. 55
hcfmusp.relation.referenceFlynn, K.J., Baxter, N.T., Schloss, P.D., Metabolic and community synergy of oral bacteria in colorectal cancer (2016) mSphere, 1 (3)
hcfmusp.relation.referenceLi, Y.Y., Ge, Q.X., Cao, J., Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients (2016) World J Gastroenterol, 22, pp. 3227-3233
hcfmusp.relation.referenceYu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., Qian, Y., Fang, W., Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy (2017) Cell, 170, pp. 548-563. , e16
hcfmusp.relation.referenceDrewes, J.L., White, J.R., Dejea, C.M., Fathi, P., Iyadorai, T., Vadivelu, J., Roslani, A.C., Sears, C.L., High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia (2017) NPJ Biofilms Microbiomes, 3, p. 34
hcfmusp.relation.referenceHieken, T.J., Chen, J., Hoskin, T.L., Walther-Antonio, M., Johnson, S., Ramaker, S., Xiao, J., Degnim, A.C., The microbiome of aseptically collected human breast tissue in benign and malignant disease (2016) Sci Rep, 6, p. 30751
hcfmusp.relation.referenceMani, S., Microbiota and breast cancer (2017) Prog Mol Biol Transl Sci, 151, pp. 217-229
hcfmusp.relation.referenceCarrière, J., Darfeuille-Michaud, A., Nguyen, H.T., Infectious etiopathogenesis of Crohn’s disease (2014) World J Gastroenterol, 20, pp. 12102-12117
hcfmusp.relation.referenceHaberman, Y., Tickle, T.L., Dexheimer, P.J., Kim, M.O., Tang, D., Karns, R., Baldassano, R.N., Denson, L.A., Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature (2015) J Clin Invest, 125, p. 1363
hcfmusp.relation.referenceMondot, S., Lepage, P., Seksik, P., Allez, M., Tréton, X., Bouhnik, Y., Colombel, J.F., Marteau, P., Structural robustness of the gut mucosal microbiota is associated with Crohn’s disease remission after surgery (2016) Gut, 65 (6), pp. 954-962. , June
hcfmusp.relation.referenceBry, L., Falk, P.G., Midtveadt, T., Gordon, J.I., A model of host-microbial interactions in an open mammalian ecosystem (1996) Science, 273 (5280), pp. 1380-1383
hcfmusp.relation.referenceBäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., Gordon, J.I., The gut microbiota as an environmental factor that regulates fat storage (2004) Proc Natl Acad Sci USA, 101, pp. 15718-15723
hcfmusp.relation.referenceLey, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I., Microbial ecology: Human gut microbes associated with obesity (2006) Nature, 444, pp. 1022-1023
hcfmusp.relation.referenceAlang, N., Kelly, C.R., Acute weight gain after fecal microbiota transplantation (2015) Open Forum Infect Dis, 2. , ofv004
hcfmusp.relation.referenceFischer, M., Kao, D., Kassam, Z., Smith, J., Louie, T., Sipe, B., Torbeck, M., Allegretti, J.R., Stool donor body mass index does not affect recipient weight after a single fecal microbiota transplantation for C. difficile infection (2018) Clin Gastroenterol Hepatol, 16, pp. 1353-1361. , December 12
hcfmusp.relation.referenceDamms-Machado, A., Mitra, S., Schollenberger, A.E., Kramer, K.M., Meile, T., Königsrainer, A., Huson, D.H., Bischoff, S.C., Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption (2015) BioMed Res Int, 2015. , 806248
hcfmusp.relation.referenceFinucane, M.M., Sharpton, T.J., Laurent, T.J., Pollard, K.S., A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter (2014) PLoS One, 9, p. e84689
hcfmusp.relation.referenceHwang, I., Park, Y.J., Kim, Y.R., Kim, Y.N., Ka, S., Lee, H.Y., Seong, J.K., Kim, J.B., Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity (2015) FASEB J, 29, pp. 2397-2411
hcfmusp.relation.referenceThaisss, C.A., Itav, S., Rothschild, D., Meijer, M.T., Levy, M., Moresi, C., Dohnalova, L., Elinav, E., Persistent microbiome alterations modulate the rate of post- dieting weight regain (2016) Nature, 540, pp. 544-551
hcfmusp.relation.referenceGriffin, N.W., Ahern, P.P., Cheng, J., Heath, A.C., Ilkaveya, O., Newgard, C.B., Fontana, L., Gordon, J.I., Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions (2017) Cell Host Microbe, 21, pp. 84-96
hcfmusp.relation.referenceWilck, N., Matus, M.G., Kearney, S.M., Olesen, S.W., Forslund, K., Bartolomaeus, H., Haase, S., Müller, D.N., Salt-responsive gut commensal modulates TH17 axis and disease (2017) Nature, 551, pp. 585-589
hcfmusp.relation.referenceKang, Y., Cai, Y., Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies (2018) Clin Res Hepatol Gastroenterol, 42, pp. 110-117. , November 1
hcfmusp.relation.referenceZubcevic, J., Baker, A., Martyniuk, C.J., Transcriptional networks in rodent models support a role for gut-brain communication in neurogenic hypertension: A review of the evidence (2017) Physiol Genom, 49, pp. 327-338
hcfmusp.relation.referenceCoit, P., Mumcu, G., Ture-Ozdemir, F., Unal, A.U., Alpar, U., Bostanci, N., Ergun, T., Sawalha, A.H., Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behçet’s disease (2016) Clin Immunol, 169, pp. 28-35
hcfmusp.relation.referenceConsolandi, C., Turroni, S., Emmi, G., Severgnini, M., Fiori, J., Peano, C., Biagi, E., D’Elios, M.M., Behçet’s syndrome patients exhibit specific microbiome signature (2015) Autoimmun Rev, 14, pp. 269-276
hcfmusp.relation.referenceShao, T., Shao, L., Li, H., Xie, Z., He, Z., Wen, C., Combined signature of the fecal microbiome and metabolome in patients with Gout (2017) Front Microbiol, 8, p. 268. , February 21
hcfmusp.relation.referenceMaeda, Y., Kurakawa, T., Umemoto, E., Motooka, D., Ito, Y., Gotoh, K., Hirota, K., Takeda, K., Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine (2016) Arthritis Rheumatol, 68, pp. 2646-2661
hcfmusp.relation.referenceChen, J., Wright, K., Davis, J.M., Jeraldo, P., Marietta, E.V., Murray, J., Nelson, H., Taneja, V., An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis (2016) Genome Med, 8, p. 43
hcfmusp.relation.referenceMertz, L., Omics tech, gut-on-a-chip, and bacterial engineering: New approaches for treating inflammatory bowel diseases (2016) IEEE Pulse, 7, pp. 9-12
hcfmusp.relation.referenceKim, H.J., Lee, J., Choi, J.H., Bahinski, A., Ingber, D.E., Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device (2016) J Vis Exp, (114)
hcfmusp.relation.referenceLee, J., Choi, J.H., Kim, H.J., Human gut-on-a-chip technology: Will this revolutionize our understanding of IBD and future treatments? (2016) Exp Rev Gastroenterol Hepatol, 10, pp. 883-885
hcfmusp.relation.referenceFu, Z.D., Cui, J.Y., Remote sensing between liver and intestine: Importance of microbial metabolites (2017) Curr Pharmacol Rep, 3, pp. 101-113
hcfmusp.relation.referenceAlonso, C., Fernández-Ramos, D., Varela-Rey, M., Martínez-Arranz, I., Navasa, N., Van Liempd, S.M., Lavín Trueba, J.L., Mato, J.M., Metabolomic identification of subtypes of nonalcoholic steatohepatitis (2017) Gastroenterology, 152, pp. 1449-1461. , e7
hcfmusp.relation.referenceHan, J., Dzierlenga, A.L., Lu, Z., Billheimer, D.D., Torabzadeh, E., Lake, A.D., Li, H., Cherrington, N.J., Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model (2017) Obesity, 25, pp. 1069-1076
hcfmusp.relation.referencePerry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F., Shulman, G.I., Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome (2016) Nature, 534, pp. 213-217
hcfmusp.relation.referenceTroisi, J., Pierri, L., Landolfi, A., Marciano, F., Bisogno, A., Belmonte, F., Palladino, C., Vajro, P., Urinary metabolomics in pediatric obesity and NAFLD identifies metabolic pathways/metabolites related to dietary habits and gut-liver Axis perturbations (2017) Nutrients, 9. , pii: E485
hcfmusp.relation.referencePriyadarshini, M., Wicksteed, B., Schiltz, G.E., Gilchrist, A., Layden, B.T., SCFA receptors in pancreatic β cells: Novel diabetes targets? (2016) Trends Endocrinol Metab, 27, pp. 653-664
hcfmusp.relation.referenceMetchnikoff, E., (1907) The prolongation of life: Optimistic studies, , William Heineman London
hcfmusp.relation.referenceBiagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Candela, M., Gut microbiota and extreme longevity (2016) Curr Biol, 26, pp. 1480-1485
hcfmusp.relation.referenceCheng, S., Larson, M.G., McCabe, E.L., Murabito, J.M., Rhee, E.P., Ho, J.E., Jacques, P.F., Wang, T.J., Distinct metabolomic signatures are associated with longevity in humans (2015) Nat Commun, 6, p. 6791
hcfmusp.relation.referenceGruber, J., Kennedy, B.K., Microbiome and longevity: Gut microbes send signals to host mitochondria (2017) Cell, 169, pp. 1168-1169
hcfmusp.relation.referenceOgrodzinski, M.P., Bernard, J.J., Lunt, S.Y., Deciphering metabolic rewiring in breast cancer subtypes (2017) Transl Res, 189, pp. 105-112
hcfmusp.relation.referenceLerner, A., Aminov, R., Matthias, T., Transglutaminases in dysbiosis as potential environmental drivers of autoimmunity (2017) Front Microbiol, 8, p. 66. , January 24
hcfmusp.relation.referenceRichard, V., Conotte, R., Mayne, D., Colet, J.M., Does the 1H-NMR plasma metabolome reflect the host-tumor interactions in human breastcancer? (2017) Oncotarget, 8 (30), pp. 49915-49930. , July 25
hcfmusp.relation.referenceChaput, N., Lepage, P., Coutzac, C., Soularue, E., Le Roux, K., Monot, C., Boselli, L., Carbonnel, F., Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab (2017) Ann Oncol, 28, pp. 1368-1379
hcfmusp.relation.referenceMatson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M.L., Luke, J.J., Gajewski, T.F., The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients (2018) Science, 359, pp. 104-108
hcfmusp.relation.referenceGopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V., Prieto, P.A., Wargo, J.A., Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients (2018) Science, 359 (6371), pp. 97-103. , November 2
hcfmusp.relation.referenceRouty, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., Fluckiger, A., Zitvogel, L., Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors (2018) Science, 359 (6371), pp. 91-97. , November 2
hcfmusp.relation.referenceAlexander, J.L., Wilson, I.D., Teare, J., Marchesi, J.R., Nicholson, J.K., Kinross, J.M., Gut microbiota modulation of chemotherapy efficacy and toxicity (2017) Nat Rev Gastroenterol Hepatol, 14, pp. 356-365
hcfmusp.relation.referenceGeller, L.T., Barzily-Rokni, M., Danino, T., Jonas, O.H., Shental, N., Nejman, D., Gavert, N., Straussman, R., Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine (2017) Science, 357, pp. 1156-1160
hcfmusp.relation.referenceCason, C.A., Dolan, K.T., Sharma, G., Tao, M., Kulkarni, R., Helenowski, I.B., Doane, B.M., Ho, K.J., Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes (2017) J Vasc Surg, , December 13
hcfmusp.relation.referenceGuasch-Ferré, M., Hu, F.B., Ruiz-Canela, M., Bulló, M., Toledo, E., Wang, D.D., Corella, D., Salas-Salvadó, J., Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet) study (2017) J Am Heart Assoc, 6. , pii: e006524
hcfmusp.relation.referenceDodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Sonnenburg, J.L., A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites (2017) Nature, 551 (7682), pp. 648-652
hcfmusp.relation.referenceQiang, X., Liotta, A.S., Shiloach, J., Gutierrez, J.C., Wang, H., Ochani, M., Ochani, K., Roth, J., New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut (2017) NPJ Biofilms Microbiomes, 3, p. 31
hcfmusp.relation.referenceSmolinska, A., Bodelier, A.G., Dallinga, J.W., Masclee, A.A., Jonkers, D.M., van Schooten, F.J., Pierik, M.J., Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease (2017) Aliment Pharmacol Ther, 45 (9), pp. 1244-1254. , May
hcfmusp.relation.referenceCozzolino, R., De Giulio, B., Marena, P., Martignetti, A., Günther, K., Lauria, F., Russo, P., Siani, A., Urinary volatile organic compounds in overweight compared to normal-weight children: Results from the Italian I.Family cohort (2017) Sci Rep, 7, p. 15636
hcfmusp.relation.referenceAlkhouri, N., Eng, K., Cikach, F., Patel, N., Yan, C., Brindle, A., Rome, E., Dweik, R.A., Breathprints of childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls (2015) Pediatr Obes, 10, pp. 23-29
hcfmusp.relation.referenceRaman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., Greenwood, R., Rioux, K.P., Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease (2013) Clin Gastroenterol Hepatol, 11, pp. 868-875. , e1-3
hcfmusp.relation.referencevan Gaal, N., Lakenman, R., Covington, J., Savage, R., de Groot, E., Bomers, M., Benninga, M., de Meij, T., Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: Non-invasive diagnostics in paediatric inflammatory bowel disease (2017) J Breath Res, 12, p. 016006. , April 25
hcfmusp.relation.referenceBhattacharyya, D., Kumar, P., Mohanty, S.K., Smith, Y.R., Misra, M., Detection of four distinct volatile indicators of colorectal cancer using functionalized Titania nanotubular arrays (2017) Sensors, 17 (8)
hcfmusp.relation.referenceAmal, H., Leja, M., Funka, K., Lasina, I., Skapars, R., Sivins, A., Ancans, G., Haick, H., Breath testing as potential colorectal cancer screening tool (2016) Int J Cancer, 138, pp. 229-236
hcfmusp.relation.referenceTong, H., Wang, Y., Li, Y., Liu, S., Chi, C., Liu, D., Guo, L., Wang, C., Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients (2017) Cancer Cell Int, 17, p. 108. , November 21
hcfmusp.relation.referenceArasaradnam, R., Wicaksono, A., O’Brien, H., Kocher, H.M., Covington, J.A., Crnogorac-Jurcevic, T., Non-invasive diagnosis of pancreatic cancer through detection of volatile organic compounds in urine (2018) Gastroenterology, 154, pp. 485-487. , November 9
hcfmusp.relation.referenceHuang, J., Mondul, A.M., Weinstein, S.J., Koutros, S., Derkach, A., Karoly, E., Sampson, J.N., Albanes, D., Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial (2016) Br J Cancer, 115, pp. 1087-1095
hcfmusp.relation.referenceOguma, T., Nagaoka, T., Kurahashi, M., Kobayashi, N., Yamamori, S., Tsuji, C., Takiguchi, H., Asano, K., Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer (2017) PLoS One, 12, p. e0174802
hcfmusp.relation.referenceBerkhout, D.J.C., Niemarkt, H.J., Benninga, M.A., Budding, A.E., van Kaam, A.H., Kramer, B.W., Pantophlet, C.M., de Meij, T.G.J., Development of severe bronchopulmonary dysplasia is associated with alterations in fecal volatile organic compounds (2018) Pediatr Res, 83, pp. 412-419. , November 22
hcfmusp.relation.referenceDevillier, P., Salvator, H., Naline, E., Couderc, L.J., Grassin-Delyle, S., Metabolomics in the diagnosis and pharmacotherapy of lung diseases (2017) Curr Pharm Des, 23, pp. 2050-2059
hcfmusp.relation.referenceFarrokhi, V., Nemati, R., Nichols, F.C., Yao, X., Anstadt, E., Fujiwara, M., Grady, J., Clark, R.B., Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis (2013) Clin Transl Immunol, 2, p. e8
hcfmusp.relation.referenceJenkins, B.J., Seyssel, K., Chiu, S., Pan, P.H., Lin, S.Y., Stanley, E., Ament, Z., Koulman, A., Odd chain fatty acids
hcfmusp.relation.referencenew insights of the relationship between the GutMicrobiota, dietary intake, biosynthesis and glucose intolerance (2017) Sci Rep, 7, p. 44845
hcfmusp.relation.referenceErickson, A.R., Cantarel, B.L., Lamendella, R., Darzi, Y., Mongodin, E.F., Pan, C., Shah, M., Jansson, J.K., Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease (2012) PLoS One, 7, p. e49138. , 10.1371
hcfmusp.relation.referenceWilmes, P., Heintz-Buschart, A., Bond, P.L., A decade of metaproteomics: Where we stand and what the future holds (2015) Proteomics, 15, pp. 3409-3417
hcfmusp.relation.referenceKolmeder, C.A., Ritari, J., Verdam, F.J., Muth, T., Keskitalo, S., Varjosalo, M., Fuentes, S., de Vos, W.M., Colonic metaproteomic signatures of active bacteria and the host in obesity (2015) Proteomics, 15, pp. 3544-3552
hcfmusp.relation.referenceMayers, M.D., Moon, C., Stupp, G.S., Su, A.I., Wolan, D.W., Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease (2017) J Proteome Res, 16, pp. 1014-1026
hcfmusp.relation.referenceBraun, J., Microgeographic proteomic networks of the human colonic Mucosa and their association with inflammatory bowel disease (2016) Cell Mol Gastroenterol Hepatol, 2, pp. 567-583
hcfmusp.relation.referenceMillis, N.F., Second international symposium on the biosafety results of genetically modified plants and microorganisms. May 1992, Goslar, FRG (1992) Australas Biotechnol, 2, pp. 237-239
hcfmusp.relation.referenceSyverton, J.T., Berry, G.P., The superinfection of the rabbit papilloma (shope) by extraneous viruses (1947) J Exp Med, 86, pp. 131-144
hcfmusp.relation.referenceZheng, J.H., Nguyen, V.H., Jiang, S.N., Park, S.H., Tan, W., Hong, S.H., Shin, M.G., Min, J.J., Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin (2017) Sci Transl Med, 9 (376)
hcfmusp.relation.referenceYoon, W., Park, Y.C., Kim, J., Chae, Y.S., Byeon, J.H., Min, S.H., Park, S., Kim, B.M., Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma (2017) Eur J Cancer, 70, pp. 48-61
hcfmusp.relation.referenceBourzac, K., Bender, E., Dolgin, E., Mullard, A., Savage, N., Gruber, K., Therapeutic developments: Masters of medicine (2017) Nature, 545, pp. S4-S9
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication485009a7-9698-46ca-9bf2-aff721e2890e
relation.isAuthorOfPublication5d79908b-3b93-4674-9eec-5136472d8abf
relation.isAuthorOfPublication.latestForDiscovery485009a7-9698-46ca-9bf2-aff721e2890e
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_FAINTUCH_Precision_medicine_The_microbiome_and_metabolome_2019.PDF
Tamanho:
189.67 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)