Evaluation of Laser Marked ASTM F 139 Stainless Steel in Phosphate Buffer Solution with Albumin

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
ESG
Autores
PIERETTI, Eurico F.
PALATNIC, Ricardo P.
COSTA, Isolda
NEVES, Mauricio D. M. das
Citação
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, v.9, n.5, p.2435-2444, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Albumin is the most abundant protein found in human serum and sinovial fluids. Investigations on its effects on the corrosion resistance of metallic biomaterials have led to controversial conclusions. The BSA (bovine serum albumin) concentration used in most of the studies is below the usual concentration found in the human physiological fluids. This is possibly the reason for the lack of agreement on the conclusions reported in literature. The aim of this study is to evaluate the effect of albumin in concentration on the susceptibility to corrosion of the ASTM F139 austenitic stainless steel (SS) used in fabrication of orthopedic implants, specifically on the areas marked by a Nd: YAG laser. The electrolyte used was a phosphate buffer solution (PBS) and the effect of albumin was investigated by adding 10 g/L into the electrolyte and comparing the corrosion resistance in the two environments, with and without albumin, by electrochemical methods. The Mott-Schottky approach was used to evaluate the electronic properties of ASTM F139 SS oxide layer marked by laser beam. The results showed a strong effect of the albumin on the electronic properties of the passive film and on the resistance to localized corrosion. The albumin changes the flat band potential position, increasing the oxide layer doping densities. The laser marked surface showed lower corrosion resistance in the electrolyte with albumin, when compared to the tests performed with pure PBS.
Palavras-chave
Biomaterials, orthopedic implants, corrosion, laser marks, albumin
Referências
  1. Belgacem O, 2007, BIOLOGICALS, V35, P43, DOI 10.1016/j.biologicals.2006.01.004
  2. Belo MD, 1999, ELECTROCHIM ACTA, V44, P2473
  3. Geringer J, 2012, WEAR, V292, P207, DOI 10.1016/j.wear.2012.05.008
  4. Gibbons D.F., 1975, BIOPH BIOENG, V4, P367
  5. Hakiki NE, 1998, J ELECTROCHEM SOC, V145, P3821, DOI 10.1149/1.1838880
  6. HAKIKI NE, 1995, CORROS SCI, V37, P1809, DOI 10.1016/0010-938X(95)00084-W
  7. Hench L. L., 1975, MAT SCI, V5, P279
  8. Hlady V, 1996, CURR OPIN BIOTECH, V7, P72, DOI 10.1016/S0958-1669(96)80098-X
  9. Ji JA, 2004, COLLOID SURFACE B, V34, P185, DOI 10.1016/j.colsurfb.2003.12.015
  10. Kallip S, 2012, ELECTROCHEM COMMUN, V20, P101, DOI 10.1016/j.elecom.2012.04.007
  11. Lyman D.J., 1974, MAT SCI, V4, P415
  12. Minovic A., 2003, J MATER SCI-MATER M, V14, P69
  13. Mishina H, 2008, WEAR, V265, P655, DOI 10.1016/j.wear.2007.12.006
  14. Omanovic S, 1999, LANGMUIR, V15, P8315, DOI 10.1021/la990474f
  15. Pieretti E. F., 2013, ELECTROCHIM ACTA
  16. Pieretti E. F., 2013, CORROSION 2013 NACE, P126
  17. Pieretti EF, 2013, ELECTROCHIM ACTA, V114, P838, DOI 10.1016/j.electacta.2013.05.101
  18. Roba M, 2009, BIOMATERIALS, V30, P2072, DOI 10.1016/j.biomaterials.2008.12.062
  19. Virtanen S, 2008, ACTA BIOMATER, V4, P468, DOI 10.1016/j.actbio.2007.12.003
  20. Williams D. F., 1976, MAT SCI, V6, P237
  21. Yan Y, 2007, TRIBOL INT, V40, P1492, DOI 10.1016/j.triboint.2007.02.019
  22. YANG J, 1994, BIOMATERIALS, V15, P262, DOI 10.1016/0142-9612(94)90049-3