Thymopoiesis in Pre- and Post-Hematopoietic Stem Cell Transplantation

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
BANDEIRA, Francine
BOLLINI, Alexia
TESTA, Lucia Helena de A.
SIMIONE, Anderson Joao
SOUZA, Marina de O. e
ZANETTI, Lilian P.
OLIVEIRA, Leila Cibele S. de
SANTOS, Ana Claudia F. dos
Citação
FRONTIERS IN IMMUNOLOGY, v.9, article ID 1889, 13p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Hematopoietic stem cell transplantation (HSCT) is an important therapeutic option for some hematological diseases. However, patients who undergo HSCT acquire a state of immunodeficiency that causes significant mortality. Reconstitution of thymic function is needed to support the immune system. One way to measure thymic function is through T-cell receptor excision circle (TREC) quantification. TRECs are generated by T-cell receptor gene rearrangements during T-cell maturation in the thymus and represent a reliable marker for thymic output. In this study, we aimed to assess aging and malignant hematological diseases as two important factors that may influence thymic output before HSCT. We observed that patients before HSCT presented signal joint TREC (sjTREC) numbers lower than 606.55 copies/mu g DNA (low values) compared with healthy individuals, with an odds ratio (OR) of 12.88 [95% confidence interval (CI): 5.26-31.53; p < 0.001]. Our results showed that a group of older individuals (>= 50 years old), comprising both healthy individuals and patients, had an OR of 10.07 (95% CI: 2.80-36.20) for low sjTREC values compared with younger individuals (<= 24 years old; p < 0.001). Multiple logistic regression analysis confirmed that both older age (>= 50 years old) and malignant hematological diseases and their treatments were important and independent risk factors related to thymic function impairment (p < 0.001). The median sjTREC value for patients of all ages was significantly lower than the sjTREC median for the subgroup of older healthy individuals (>= 50 years old; p < 0.001). These data suggested that patients before HSCT and healthy individuals exhibited age-dependent thymic impairment, and that prior treatment for hematological diseases may exacerbate aging-related deterioration of natural thymic function. Furthermore, we analyzed these patients 9 months post-HSCT and compared patients who underwent autologous HSCT with those who underwent allogeneic HSCT. Both groups of patients achieved sjTREC copy numbers similar to those of healthy individuals. We did not find a close relationship between impaired thymic function prior to HSCT and worse thymic recovery after HSCT.
Palavras-chave
T-cell receptor excision circles, T-cell receptor gene, autologous hematopoietic stem cell transplantation, allogeneic hematopoietic stem cell transplantation, malignant hematological diseases, immune reconstitution, thymopoiesis, adaptive immune system
Referências
  1. Al-Harthi L, 2000, J IMMUNOL METHODS, V237, P187, DOI 10.1016/S0022-1759(00)00136-8
  2. Atschekzei F, 2016, INT ARCH ALLERGY IMM, V171, P136, DOI 10.1159/000450950
  3. Benjamin CL, 2016, JCI INSIGHT, V1, DOI 10.1172/jci.insight.88787
  4. Cho S, 2017, INT J LEGAL MED, V131, P1061, DOI 10.1007/s00414-017-1540-7
  5. Cho S, 2014, LEGAL MED-TOKYO, V16, P135, DOI 10.1016/j.legalmed.2014.01.009
  6. Clave E, 2005, BLOOD, V105, P2608, DOI 10.1182/blood-2004-04-1667
  7. Clave E, 2013, FRONT IMMUNOL, V4, DOI 10.3389/fimmu.2013.00054
  8. CLOT J, 1978, CLIN EXP IMMUNOL, V32, P346
  9. Dohner H, 2013, HAEMATOLOGICA, V98, P233, DOI 10.3324/haematol.2012.072264
  10. Douek DC, 1998, NATURE, V396, P690
  11. Douek DC, 2000, VACCINE, V18, P1638, DOI 10.1016/S0264-410X(99)00499-5
  12. Dworacki G, 2015, IMMUNOLOGY, V146, P456, DOI 10.1111/imm.12522
  13. ELLIOTT JF, 1988, NATURE, V331, P627
  14. Gaballa A, 2018, BONE MARROW TRANSPL, V53, P69, DOI 10.1038/bmt.2017.216
  15. Gaballa A, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17101705
  16. Geenen V, 2003, J ENDOCRINOL, V176, P305, DOI 10.1677/joe.0.1760305
  17. Haining WN, 2005, BLOOD, V106, P1749, DOI 10.1182/blood-2005-03-1082
  18. Hisazumi R, 2016, VET IMMUNOL IMMUNOP, V169, P74, DOI 10.1016/j.vetimm.2015.12.009
  19. Hosmer DW, 2000, APPL LOGISTIC REGRES
  20. HULSTAERT F, 1994, CLIN IMMUNOL IMMUNOP, V70, P152, DOI 10.1006/clin.1994.1023
  21. Ibrahim SF, 2016, J FORENSIC SCI, V61, P1107, DOI 10.1111/1556-4029.12988
  22. Ito G, 2015, VET IMMUNOL IMMUNOP, V166, P1, DOI 10.1016/j.vetimm.2015.05.003
  23. Kirkwood BR, 2006, ESSENTIAL MED STAT
  24. Li YQ, 2009, CANCER IMMUNOL IMMUN, V58, P1047, DOI 10.1007/s00262-008-0621-3
  25. Morgun A, 2004, J CLIN IMMUNOL, V24, P612, DOI 10.1007/s10875-004-6246-1
  26. MyTRECKit, 2017, MYTREC REAL TIM QPCR
  27. Naylor K, 2005, J IMMUNOL, V174, P7446, DOI 10.4049/jimmunol.174.11.7446
  28. Palmer DB, 2013, FRONT IMMUNOL, V4, DOI 10.3389/fimmu.2013.00316
  29. Poulin JF, 2003, BLOOD, V102, P4600, DOI 10.1182/blood-2003-05-1428
  30. QIAamp, 2012, QIAMP DNA MIN BLOOD
  31. Serana F, 2011, J CLIN IMMUNOL, V31, P540, DOI 10.1007/s10875-011-9526-6
  32. Steffens CM, 2000, CLIN IMMUNOL, V97, P95, DOI 10.1006/clim.2000.4938
  33. Sun DP, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00654
  34. Svaldi M, 2003, BRIT J HAEMATOL, V122, P795, DOI 10.1046/j.1365-2141.2003.04482.x
  35. Taub DD, 2005, IMMUNOL REV, V205, P72, DOI 10.1111/j.0105-2896.2005.00275.x
  36. Wilson K, 2018, HUM VACC IMMUNOTHER, V14, P1378, DOI 10.1080/21645515.2018.1433971
  37. Zhang LQ, 1999, J EXP MED, V190, P725, DOI 10.1084/jem.190.5.725
  38. Zhang SL, 2012, IMMUNITY, V36, P163, DOI 10.1016/j.immuni.2012.02.005