Selective atrial vagal denervation guided by spectral mapping to treat advanced atrioventricular block

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
EUROPACE, v.18, n.3, p.445-449, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Asymptomatic nocturnal long ventricular pauses are usually detected accidentally and it has been suggested that they may lead to sudden death. Identification of predisposing factors could prevent cardiovascular events. We report the case of a patient with frequent asymptomatic nocturnal ventricular pauses of 3-11 s, characteristic of a vagally mediated atrioventricular (AV) block. Echocardiography, treadmill test, thyroid function test levels, and polysomnogram were normal. In an attempt to reduce the risk, it was decided that an atrial vagal denervation induced by radiofrequency (RF) ablation (cardioneuroablation) could be useful. Spectral mapping was used to localize endocardial vagal innervation in the right and left aspects of the inter-atrial septum, responsible for the sinus node and AV node modulation, and RF pulses were applied in those sites only. After finishing the procedure, significant changes were observed in the heart rate (66-90 b.p.m.), atrial-His interval (115-74 ms), Wenckebach cycle length (820-570 ms), and sinus node recovery time (1100-760 ms). Follow-up Holter recording demonstrated that the number of ventricular pauses had reduced from 438 to 0. Heart rate and time domain characteristics were compatible with vagal denervation. Ablation of the endocardial vagal innervation sites seems to be safe and efficient in reducing the frequency and the length of the ventricular pauses. It was possible by identifying certain spectral components of the atrial electrogram, resulting in a conservative approach.
Palavras-chave
Atrioventricular block, Vagal denervation, Cardioneuroablation, Spectral mapping
Referências
  1. Lemery R, 2006, HEART RHYTHM, V3, P387, DOI 10.1016/j.hrthm.2006.01.009
  2. Pachon JC, 2004, EUROPACE, V6, P590, DOI 10.1016/j.eupc.2004.08.005
  3. Schauerte P, 2000, CIRCULATION, V102, P2774
  4. Rivarola EWR, 2011, EUROPACE, V13, P1141, DOI 10.1093/europace/eur074
  5. Pachon JC, 2005, EUROPACE, V7, P1, DOI 10.1016/j.eupc.2004.10.003
  6. Brignole M, 2013, EUROPACE, V15, P1070, DOI 10.1093/europace/eut206
  7. Katritsis D, 2008, AM J CARDIOL, V102, P330, DOI 10.1016/j.amjcard.2008.03.062
  8. GUILLEMINAULT C, 1984, NEW ENGL J MED, V311, P1006, DOI 10.1056/NEJM198410183111602
  9. Pokushalov E, 2009, HEART RHYTHM, V6, P1257, DOI 10.1016/j.hrthm.2009.05.018
  10. ECTOR H, 1983, PACE, V6, P548, DOI 10.1111/j.1540-8159.1983.tb05294.x
  11. Scanavacca M, 2009, J CARDIOVASC ELECTR, V20, P558, DOI 10.1111/j.1540-8167.2008.01385.x
  12. Serafini A, 2012, SLEEP MED, V13, P759, DOI 10.1016/j.sleep.2012.03.001
  13. Katritsis D, 2009, EUROPACE, V11, P308, DOI 10.1093/europace/eup036
  14. Holty JEC, 2011, SLEEP MED REV, V15, P143, DOI 10.1016/j.smrv.2010.09.001
  15. Scherlag BJ, 2005, J INTERV CARD ELECTR, V13, P37, DOI 10.1007/s10840-005-2492-2
  16. Pappone C, 2004, CIRCULATION, V109, P327, DOI 10.1161/01.CIR.0000112641.16340.C7
  17. OGAWA S, 1991, JPN CIRC J, V55, P761
  18. Scanavacca M, 2006, CIRCULATION, V114, P876, DOI 10.1161/CIRCULATIONAHA.106.633560
  19. Makita S, 2014, ATHEROSCLEROSIS, V236, P116, DOI 10.1016/j.atherosclerosis.2014.06.024
  20. Pachon MJC, 2006, PACING CLIN ELECTROP, V29, P318
  21. Rotondi F, 2012, PACE, V35, P210