Shortening telomere is associated with subclinical atherosclerosis biomarker in omnivorous but not in vegetarian healthy men

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
IMPACT JOURNALS LLC
Autores
CINEGAGLIA, Naiara
ROSA, Daniela
MIRANDA, Debora
SANDRIM, Valeria
Citação
AGING-US, v.11, n.14, p.5070-5080, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Telomere length is considered to be a biomarker of biological aging and age-related disease. There are few studies that have evaluated the association between telomere length and diet, and none of them have evaluated the impact of a vegetarian diet on telomere length and its correlation with cardiovascular biomarkers in apparently healthy subjects. Therefore, our objectives were to evaluate leukocyte telomere length (LTL) in vegetarians and omnivorous subjects and its association with classical cardiovascular risk biomarkers. From the total of 745 participants initially recruited, 44 omnivorous and 44 vegetarian men apparently healthy were selected for this study and LTL was measured in 39 omnivorous and 41 vegetarians by Real-Time Quantitative PCR reaction. Although telomere length was not different between omnivorous and vegetarians, we found a strong negative correlation between LTL and IMT (intima-media thickness) in omnivorous, but not in vegetarian group. In addition, omnivorous who were classified with short telomere length had higher carotid IMT compared to vegetarians. Our data suggest that telomere length can be a marker of subclinical atherosclerosis in the omnivorous group.
Palavras-chave
vegetarian, telomere length, carotid intima-media thickness, cardiovascular
Referências
  1. Acosta-Navarro J, 2017, INT J CARDIOL, V230, P562, DOI 10.1016/j.ijcard.2016.12.058
  2. Appleby PN, 2002, PUBLIC HEALTH NUTR, V5, P645, DOI 10.1079/PHN2002332
  3. Aviv A, 2012, ANNU REV MED, V63, P293, DOI 10.1146/annurev-med-050311-104846
  4. Baragetti A, 2015, J INTERN MED, V277, P478, DOI 10.1111/joim.12282
  5. Belinova L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107561
  6. Blackburn EH, 2015, SCIENCE, V350, P1193, DOI 10.1126/science.aab3389
  7. Boccardi V, 2016, AGING-US, V8, P12, DOI 10.18632/aging.100886
  8. Boutouyrie P, 1999, CIRCULATION, V100, P1387, DOI 10.1161/01.CIR.100.13.1387
  9. Chen SF, 2014, AGING-US, V6, P414, DOI 10.18632/aging.100671
  10. Crous-Bou M, 2014, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g6674
  11. Cullum-Dugan D, 2015, J ACAD NUTR DIET, V115, P801, DOI 10.1016/j.jand.2015.02.033
  12. de Lorgeril M, 2006, PUBLIC HEALTH NUTR, V9, P118, DOI 10.1079/PHN2005933
  13. Demissie S, 2006, AGING CELL, V5, P325, DOI 10.1111/j.1474-9726.2006.00224.x
  14. Fraser G, 2015, PUBLIC HEALTH NUTR, V18, P537, DOI 10.1017/S1368980014000263
  15. Haldar S, 2007, EUR J CLIN NUTR, V61, P1011, DOI 10.1038/sj.ejcn.1602615
  16. Harte AL, 2012, EXP DIABETES RES, DOI 10.1155/2012/895185
  17. Hoeks APG, 1997, ULTRASOUND MED BIOL, V23, P1017, DOI 10.1016/S0301-5629(97)00119-1
  18. Houben JMJ, 2008, FREE RADICAL BIO MED, V44, P235, DOI 10.1016/j.freeradbiomed.2007.10.001
  19. Kasielski M, 2016, NUTR J, V15, DOI 10.1186/s12937-016-0189-2
  20. Krajcovicova-Kudlackova M, 2008, PHYSIOL RES, V57, P647
  21. LAURENT S, 1994, HYPERTENSION, V23, P878, DOI 10.1161/01.HYP.23.6.878
  22. Li D, 2011, J AGR FOOD CHEM, V59, P777, DOI 10.1021/jf103846u
  23. Lian FZ, 2015, BMJ OPEN, V5, DOI 10.1136/bmjopen-2015-009305
  24. Lin CL, 2001, ATHEROSCLEROSIS, V158, P247, DOI 10.1016/S0021-9150(01)00429-4
  25. Lopez-Garcia E, 2004, AM J CLIN NUTR, V80, P1029
  26. Montezano AC, 2015, CAN J CARDIOL, V31, P631, DOI 10.1016/j.cjca.2015.02.008
  27. Montonen J, 2013, EUR J NUTR, V52, P337, DOI 10.1007/s00394-012-0340-6
  28. Mukherjee M, 2009, HEART, V95, P669, DOI 10.1136/hrt.2008.150250
  29. O'Donnell CJ, 2008, ARTERIOSCL THROM VAS, V28, P1165, DOI 10.1161/ATVBAHA.107.154849
  30. O'Leary DH, 2010, EUR HEART J, V31, P1682, DOI 10.1093/eurheartj/ehq185
  31. Pawlak Roman, 2017, Diabetes Spectr, V30, P82, DOI 10.2337/ds16-0057
  32. Poljsak B, 2013, OXID MED CELL LONGEV, DOI 10.1155/2013/956792
  33. Rafie N, 2017, EUR J CLIN NUTR, V71, P151, DOI 10.1038/ejcn.2016.149
  34. Rehkopf DH, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1002188
  35. Romeu M, 2013, NUTR J, V12, DOI 10.1186/1475-2891-12-102
  36. Sanders JL, 2013, EPIDEMIOL REV, V35, P112, DOI 10.1093/epirev/mxs008
  37. Sidhu PS, 1997, BRIT J RADIOL, V70, P85, DOI 10.1259/bjr.70.829.9059301
  38. Toupance S, 2017, HYPERTENSION, V70, P420, DOI 10.1161/HYPERTENSIONAHA.117.09354
  39. Verhulst S, 2016, DIABETOLOGIA, V59, P1258, DOI 10.1007/s00125-016-3915-6
  40. Wang FL, 2015, J AM HEART ASSOC, V4, DOI 10.1161/JAHA.115.002408
  41. Yang SY, 2012, NUTR CLIN PRACT, V27, P392, DOI 10.1177/0884533611436173
  42. Yeh JK, 2016, GENES-BASEL, V7, DOI 10.3390/genes7090058
  43. Zgheib NK, 2018, AGING DIS, V9, P77, DOI 10.14336/AD.2017.0310
  44. Zhang JW, 2016, AGEING RES REV, V25, P55, DOI 10.1016/j.arr.2015.11.006