Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency

Carregando...
Imagem de Miniatura
Citações na Scopus
91
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
KONG, Xiao-Fei
MARTINEZ-BARRICARTE, Ruben
KENNEDY, James
MELE, Federico
LAZAROV, Tomi
DEENICK, Elissa K.
MA, Cindy S.
BRETON, Gaelle
LUCERO, Kimberly B.
LANGLAIS, David
Citação
NATURE IMMUNOLOGY, v.19, n.9, p.973-985, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human inborn errors of IFN-gamma immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12-and IL-23-producing CD1c(+) conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory T(H)1(star) cells selectively fail to produce IFN-gamma when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a(-/-) mice lack cDC2s, have CD4(+) T cells that produce small amounts of IFN-gamma after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-gamma production by mycobacterium-specific memory T(H)1(star) cells.
Palavras-chave
Referências
  1. Abecasis GR, 2002, NAT GENET, V30, P97, DOI 10.1038/ng786
  2. Acosta-Rodriguez EV, 2007, NAT IMMUNOL, V8, P639, DOI 10.1038/ni1467
  3. Ai JW, 2015, J RHEUMATOL, V42, P2229, DOI 10.3899/jrheum.150057
  4. Arlehamn CSL, 2016, PLOS PATHOG, V12, DOI 10.1371/journal.ppat.1005760
  5. Avery DT, 2010, J EXP MED, V207, P155, DOI 10.1084/jem.20091706
  6. Barish GD, 2010, GENE DEV, V24, P2760, DOI 10.1101/gad.1998010
  7. Becker-Herman S, 2005, MOL BIOL CELL, V16, P5061, DOI 10.1091/mbc.E05-04-0327
  8. Beisner DR, 2013, J EXP MED, V210, P23, DOI 10.1084/jem.20121072
  9. Berghout J, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003491
  10. Bergmann H, 2013, J EXP MED, V210, P31, DOI 10.1084/jem.20121076
  11. Bigley V, 2016, CURR OPIN ALLERGY CL, V16, P530, DOI 10.1097/ACI.0000000000000322
  12. Bigley V, 2011, J EXP MED, V208, P227, DOI 10.1084/jem.20101459
  13. Bogunovic D, 2012, SCIENCE, V337, P1684, DOI 10.1126/science.1224026
  14. Boisson-Dupuis S, 2015, IMMUNOL REV, V264, P103, DOI 10.1111/imr.12272
  15. Brady OA, 2014, J BIOL CHEM, V289, P19670, DOI 10.1074/jbc.M113.515700
  16. Breton G, 2015, NAT PROTOC, V10, P1407, DOI 10.1038/nprot.2015.092
  17. Breton G, 2015, J EXP MED, V212, P401, DOI 10.1084/jem.20141441
  18. Bridgeford EC, 2008, J CLIN MICROBIOL, V46, P1881, DOI 10.1128/JCM.01875-07
  19. Bustamante J, 2014, SEMIN IMMUNOL, V26, P454, DOI 10.1016/j.smim.2014.09.008
  20. Bustamante J, 2011, NAT IMMUNOL, V12, P213, DOI 10.1038/ni.1992
  21. Casanova JL, 2002, ANNU REV IMMUNOL, V20, P581, DOI 10.1146/annurev.immunol.20.081501.125851
  22. Conley ME, 2009, ANNU REV IMMUNOL, V27, P199, DOI 10.1146/annurev.immunol.021908.132649
  23. de Beaucoudrey L, 2010, MEDICINE, V89, P381, DOI 10.1097/MD.0b013e3181fdd832
  24. Dickinson RE, 2014, BLOOD, V123, P863, DOI 10.1182/blood-2013-07-517151
  25. Dupuis S, 2000, IMMUNOL REV, V178, P129, DOI 10.1034/j.1600-065X.2000.17810.x
  26. Fleck D, 2016, J BIOL CHEM, V291, P318, DOI 10.1074/jbc.M115.697995
  27. Fluhrer R, 2006, NAT CELL BIOL, V8, P894, DOI 10.1038/ncb1450
  28. Friedmann E, 2006, NAT CELL BIOL, V8, P843, DOI 10.1038/ncb1440
  29. Geiger R, 2009, J EXP MED, V206, P1525, DOI 10.1084/jem.20090504
  30. GROS P, 1981, J IMMUNOL, V127, P2417
  31. Hambleton S, 2011, NEW ENGL J MED, V365, P127, DOI 10.1056/NEJMoa1100066
  32. Heinz S, 2010, MOL CELL, V38, P576, DOI 10.1016/j.molcel.2010.05.004
  33. Itan Y, 2016, NAT METHODS, V13, P109, DOI 10.1038/nmeth.3739
  34. Itan Y, 2013, P NATL ACAD SCI USA, V110, P5558, DOI [10.1073/PNAS.1218167110, 10.1073/pnas.1218167110]
  35. Iwakoshi NN, 2007, J EXP MED, V204, P2267, DOI 10.1084/jem.20070525
  36. Kaikkonen MU, 2013, MOL CELL, V51, P310, DOI 10.1016/j.molcel.2013.07.010
  37. Keane J, 2001, NEW ENGL J MED, V345, P1098, DOI 10.1056/NEJMoa011110
  38. KINDLER V, 1989, CELL, V56, P731, DOI 10.1016/0092-8674(89)90676-4
  39. Kirkin V, 2007, CELL DEATH DIFFER, V14, P1678, DOI 10.1038/sj.cdd.4402175
  40. Kong XF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058286
  41. Kreins AY, 2015, J EXP MED, V212, P1641, DOI 10.1084/jem.20140280
  42. Langlais D, 2016, J EXP MED, V213, P585, DOI 10.1084/jem.20151764
  43. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  44. Ma CS, 2016, J EXP MED, V213, P1589, DOI 10.1084/jem.20151467
  45. Mancino A, 2015, GENE DEV, V29, P394, DOI 10.1101/gad.257592.114
  46. Marquis JF, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002097
  47. Martin L, 2008, J BIOL CHEM, V283, P1644, DOI 10.1074/jbc.M706661200
  48. Martinez-Barricarte R., 2016, CURR PROTOC IMMUNOL, V115
  49. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  50. Merad M, 2013, ANNU REV IMMUNOL, V31, P563, DOI 10.1146/annurev-immunol-020711-074950
  51. Moreno-De-Luca A, 2011, J MED GENET, V48, P141, DOI 10.1136/jmg.2010.082263
  52. NATHAN CF, 1983, J EXP MED, V158, P670, DOI 10.1084/jem.158.3.670
  53. Ng SL, 2011, P NATL ACAD SCI USA, V108, P21170, DOI 10.1073/pnas.1119137109
  54. Ostuni R, 2013, CELL, V152, P157, DOI 10.1016/j.cell.2012.12.018
  55. Prando C, 2013, MEDICINE, V92, P109, DOI 10.1097/MD.0b013e31828a01f9
  56. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  57. Reynolds G, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00330
  58. Rieux-Laucat F, 2006, CURR DIRECT AUTOIMMU, V9, P18
  59. Saliba DG, 2014, CELL REP, V8, P1308, DOI 10.1016/j.celrep.2014.07.034
  60. Schneppenheim J, 2014, BIOCHEM BIOPH RES CO, V451, P48, DOI 10.1016/j.bbrc.2014.07.051
  61. Schneppenheim J, 2014, MOL CELL BIOL, V34, P1398, DOI 10.1128/MCB.00038-14
  62. Schneppenheim J, 2013, J EXP MED, V210, P41, DOI 10.1084/jem.20121069
  63. See P, 2017, SCIENCE, V356, DOI 10.1126/science.aag3009
  64. Teng MWL, 2015, NAT MED, V21, P719, DOI 10.1038/nm.3895
  65. Thiant S, 2017, BLOOD CANCER J, V7, DOI 10.1038/bcj.2017.29
  66. Thorvaldsdottir H, 2013, BRIEF BIOINFORM, V14, P178, DOI 10.1093/bib/bbs017
  67. Vignali DAA, 2012, NAT IMMUNOL, V13, P722, DOI 10.1038/ni.2366
  68. Villani AC, 2017, SCIENCE, V356, DOI 10.1126/science.aah4573
  69. Voss M, 2013, BBA-BIOMEMBRANES, V1828, P2828, DOI 10.1016/j.bbamem.2013.03.033
  70. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  71. Zhang Y, 2015, NAT IMMUNOL, V16, P1001, DOI 10.1038/ni.3275