Unfolded Protein Response: Cause or Consequence of Lipid and Lipoprotein Metabolism Disturbances?

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING AG
Autores
PINTO, Bruno Araujo Serra
FRANCA, Lucas Martins
PAES, Antonio Marcus de Andrade
Citação
BIOACTIVE LIPIDS IN HEALTH AND DISEASE, v.1127, p.67-82, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The liver plays a capital role in the control of whole body energy homeostasis through the metabolization of dietary carbohydrates and lipids. However, under excess macronutrient uptake, those pathways overcharge nucleus-to-endoplasmic reticulum (ER) traffic pathways, leading to luminal overload of unfolded proteins which activates a series of adaptive signaling pathways known as unfolded protein response (UPR). The UPR is a central network mechanism for cellular stress adaptation, however far from a global nonspecific all-or-nothing response. Such a complex signaling network is able to display considerable specificity of responses, with activation of specific signaling branches trimmed for distinct types of stimuli. This makes the UPR a fundamental mechanism underlying metabolic processes and diseases, especially those related to lipid and carbohydrate metabolism. Thus, for a better understanding of the role of UPR on the physiopathology of lipid metabolism disorders, the concepts discussed along this chapter will demonstrate how several metabolic derangements activate UPR components and, in turn, how UPR triggers several metabolic adaptations through its component signaling proteins. This dual role of UPR on lipid metabolism will certainly foment the pursuit of an answer for the question: is UPR cause or consequence of lipid and lipoprotein metabolism disturbances?
Palavras-chave
Unfolded protein response, ER stress, PERK, IRE-1 alpha, ATF-6
Referências
  1. Ameri K, 2008, INT J BIOCHEM CELL B, V40, P14, DOI 10.1016/j.biocel.2007.01.020
  2. Araki K, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a007526
  3. Ariyama H, 2010, J BIOL CHEM, V285, P22027, DOI 10.1074/jbc.M110.126870
  4. Arruda AP, 2015, CELL METAB, V22, P381, DOI 10.1016/j.cmet.2015.06.010
  5. Azfer A, 2006, AM J PHYSIOL-HEART C, V291, pH1411, DOI 10.1152/ajpheart.01378.2005
  6. Bertolotti A, 2000, NAT CELL BIOL, V2, P326
  7. Bravo R, 2013, INT REV CEL MOL BIO, V301, P215, DOI 10.1016/B978-0-12-407704-1.00005-1
  8. Cao J, 2012, MOL CELL BIOCHEM, V364, P115, DOI 10.1007/s11010-011-1211-9
  9. Cazanave SC, 2010, AM J PHYSIOL-GASTR L, V299, pG236, DOI 10.1152/ajpgi.00091.2010
  10. Chen D, 2018, J NEUROINFLAMM, V15, DOI 10.1186/s12974-018-1077-9
  11. Chen YY, 2013, INT J MOL MED, V32, P1401, DOI 10.3892/ijmm.2013.1530
  12. Choi SE, 2008, ARCH BIOCHEM BIOPHYS, V475, P109, DOI 10.1016/j.abb.2008.04.015
  13. Costa-Mattioli M, 2005, NATURE, V436, P1166, DOI 10.1038/nature03897
  14. Cullinan SB, 2006, INT J BIOCHEM CELL B, V38, P317, DOI 10.1016/j.biocel.2005.09.018
  15. Cunha DA, 2008, J CELL SCI, V121, P2308, DOI 10.1242/jcs.026062
  16. Deldicque L, 2011, EUR J APPL PHYSIOL, V111, P1553, DOI 10.1007/s00421-010-1783-1
  17. Deldicque L, 2010, AM J PHYSIOL-ENDOC M, V299, pE695, DOI 10.1152/ajpendo.00038.2010
  18. Egnatchik RA, 2014, MOL METAB, V3, P544, DOI 10.1016/j.molmet.2014.05.004
  19. Franca LM, 2014, BIOCHEM BIOPH RES CO, V443, P725, DOI 10.1016/j.bbrc.2013.12.042
  20. Gardner BM, 2011, SCIENCE, V333, P1891, DOI 10.1126/science.1209126
  21. Ghemrawi R, 2018, CELLS-BASEL, V7, DOI 10.3390/cells7060063
  22. Glimcher LH, 2009, ANN NY ACAD SCI, V1173, pE2, DOI 10.1111/j.1749-6632.2009.04956.x
  23. Gregor MF, 2009, DIABETES, V58, P693, DOI 10.2337/db08-1220
  24. Grootjans J, 2016, NAT REV IMMUNOL, V16, P469, DOI 10.1038/nri.2016.62
  25. Halbleib K, 2017, MOL CELL, V67, P673, DOI 10.1016/j.molcel.2017.06.012
  26. Han J, 2013, DIABETOLOGIA, V56, P911, DOI 10.1007/s00125-012-2809-5
  27. Han J, 2016, J LIPID RES, V57, P1329, DOI 10.1194/jlr.R067595
  28. Harding HP, 2001, MOL CELL, V7, P1153, DOI 10.1016/S1097-2765(01)00264-7
  29. Harding HP, 2000, MOL CELL, V6, P1099, DOI 10.1016/S1097-2765(00)00108-8
  30. Hasnain SZ, 2014, NAT MED, V20, P1417, DOI 10.1038/nm.3705
  31. Hayashi A, 2007, J BIOL CHEM, V282, P34525, DOI 10.1074/jbc.M704300200
  32. He Y, 2010, GENE EXPRESSION, V15, P13, DOI 10.3727/105221610X12819686555051
  33. Hebert DN, 2007, PHYSIOL REV, V87, P1377, DOI 10.1152/physrev.00050.2006
  34. Herrema H, 2016, J BIOL CHEM, V291, P17394, DOI 10.1074/jbc.M116.728949
  35. Hetz C, 2014, NAT REV NEUROSCI, V15, P233, DOI 10.1038/nrn3689
  36. Hetz C, 2012, NAT REV MOL CELL BIO, V13, P89, DOI 10.1038/nrm3270
  37. Ho N, 2018, J CELL SCI, V131, DOI 10.1242/jcs.199307
  38. Hollien J, 2013, BBA-MOL CELL RES, V1833, P2458, DOI 10.1016/j.bbamcr.2013.01.016
  39. Hollien J, 2009, J CELL BIOL, V186, P323, DOI 10.1083/jcb.200903014
  40. Hourihan JM, 2016, MOL CELL, V63, P553, DOI 10.1016/j.molcel.2016.07.019
  41. Huh WJ, 2010, GASTROENTEROLOGY, V139, P2038, DOI 10.1053/j.gastro.2010.08.050
  42. Imai Y, 2002, MOL CELL, V10, P55, DOI 10.1016/S1097-2765(02)00583-X
  43. Iurlaro R, 2016, FEBS J, V283, P2640, DOI 10.1111/febs.13598
  44. Iwakoshi NN, 2003, NAT IMMUNOL, V4, P321, DOI 10.1038/ni907
  45. Iwasaki Y, 2014, DIABETES, V63, P152, DOI 10.2337/db13-0757
  46. Jung TW, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17020192
  47. Kammoun HL, 2009, J CLIN INVEST, V119, P1201, DOI 10.1172/JCI37007
  48. Karaskov E, 2006, ENDOCRINOLOGY, V147, P3398, DOI 10.1210/en.2005-1494
  49. Kars M, 2010, DIABETES, V59, P1899, DOI 10.2337/db10-0308
  50. Kharroubi I, 2004, ENDOCRINOLOGY, V145, P5087, DOI 10.1210/en.2004-0478
  51. Kim MS, 2016, J CLIN INVEST, V126, P4372, DOI 10.1172/JCI81993
  52. Lauressergues E, 2012, NEUROPHARMACOLOGY, V62, P784, DOI 10.1016/j.neuropharm.2011.08.048
  53. Laybutt DR, 2007, DIABETOLOGIA, V50, P752, DOI 10.1007/s00125-006-0590-z
  54. Lee AH, 2003, MOL CELL BIOL, V23, P7448, DOI 10.1128/MCB.23.21.7448-7459.2003
  55. Lee AH, 2005, EMBO J, V24, P4368, DOI 10.1038/sj.emboj.7600903
  56. Lee AH, 2008, SCIENCE, V320, P1492, DOI 10.1126/science.1158042
  57. Lee AH, 2009, CELL MOL LIFE SCI, V66, P2835, DOI 10.1007/s00018-009-0049-8
  58. Lei K, 2003, P NATL ACAD SCI USA, V100, P2432, DOI 10.1073/pnas.0438011100
  59. Lerner AG, 2012, CELL METAB, V16, P250, DOI 10.1016/j.cmet.2012.07.007
  60. Li HK, 2011, BIOCHEM J, V438, P283, DOI 10.1042/BJ20110263
  61. Lin JH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004170
  62. Maiuolo J, 2011, P NATL ACAD SCI USA, V108, P7832, DOI 10.1073/pnas.1101379108
  63. Marciniak SJ, 2004, GENE DEV, V18, P3066, DOI 10.1101/gad.1250704
  64. Marfella R, 2009, J LIPID RES, V50, P2314, DOI 10.1194/jlr.P900032-JLR200
  65. Martinon F, 2010, NAT IMMUNOL, V11, P411, DOI 10.1038/ni.1857
  66. McCullough KD, 2001, MOL CELL BIOL, V21, P1249, DOI 10.1128/MCB.21.4.1249-1259.2001
  67. Moffitt JH, 2005, DIABETOLOGIA, V48, P1819, DOI 10.1007/s00125-005-1861-9
  68. Nabeebaccus AA, 2017, JCI INSIGHT, V2, DOI 10.1172/jci.insight.96184
  69. Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200
  70. Nichols WC, 1998, CELL, V93, P61, DOI 10.1016/S0092-8674(00)81146-0
  71. Nielsen LB, 2002, ARTERIOSCL THROM VAS, V22, P1489, DOI 10.1161/01.ATV.0000030199.06252.26
  72. Ohoka N, 2005, EMBO J, V24, P1243, DOI 10.1038/sj.emboj.7600596
  73. Oyadomari S, 2008, CELL METAB, V7, P520, DOI 10.1016/j.cmet.2008.04.011
  74. Ozcan U, 2004, SCIENCE, V306, P457, DOI 10.1126/science.1103160
  75. Palomer X, 2014, INT J CARDIOL, V174, P110, DOI 10.1016/j.ijcard.2014.03.176
  76. Park SW, 2010, NAT MED, V16, P429, DOI 10.1038/nm.2099
  77. Perman JC, 2011, J CLIN INVEST, V121, P2625, DOI 10.1172/JCI43068
  78. Peter A, 2009, DIABETES, V58, P1757, DOI 10.2337/db09-0188
  79. Petremand J, 2012, DIABETES, V61, P1100, DOI 10.2337/db11-1221
  80. Pfaffenbach KT, 2011, CURR OPIN CELL BIOL, V23, P150, DOI 10.1016/j.ceb.2010.09.007
  81. Puri P, 2008, GASTROENTEROLOGY, V134, P568, DOI 10.1053/j.gastro.2007.10.039
  82. Puthalakath H, 2007, CELL, V129, P1337, DOI 10.1016/j.cell.2007.04.027
  83. Rozpedek W, 2015, CURR MED CHEM, V22, P3169, DOI 10.2174/0929867322666150818104254
  84. Rutkowski DT, 2010, J CELL BIOL, V189, P783, DOI 10.1083/jcb.201003138
  85. Rutkowski DT, 2008, DEV CELL, V15, P829, DOI 10.1016/j.devcel.2008.10.015
  86. Rutkowski DT, 2004, TRENDS CELL BIOL, V14, P20, DOI 10.1016/j.tcb.2003.11.001
  87. Santos CXC, 2009, ANTIOXID REDOX SIGN, V11, P2409, DOI [10.1089/ars.2009.2625, 10.1089/ARS.2009.2625]
  88. Sarvani C, 2017, PHARMACOL RES, V119, P412, DOI 10.1016/j.phrs.2017.02.018
  89. Pinto BAS, 2016, METAB BRAIN DIS, V31, P917, DOI 10.1007/s11011-016-9830-1
  90. Shen JS, 2005, METHODS, V35, P382, DOI 10.1016/j.ymeth.2004.10.011
  91. Shibata Y, 2006, CELL, V126, P435, DOI 10.1016/j.cell.2006.07.019
  92. Shibue T, 2006, EMBO J, V25, P4952, DOI 10.1038/sj.emboj.7601359
  93. So JS, 2012, CELL METAB, V16, P487, DOI 10.1016/j.cmet.2012.09.004
  94. Softic S, 2017, J CLIN INVEST, V127, P4059, DOI 10.1172/JCI94585
  95. Song BB, 2008, J CLIN INVEST, V118, P3378, DOI 10.1172/JCI34587
  96. Tait SWG, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a008706
  97. Tam AB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045078
  98. Flister KFT, 2018, J NUTR BIOCHEM, V62, P155, DOI 10.1016/j.jnutbio.2018.09.007
  99. Tufanli O, 2017, P NATL ACAD SCI USA, V114, pE1395, DOI 10.1073/pnas.1621188114
  100. Urano F, 2000, SCIENCE, V287, P664, DOI 10.1126/science.287.5453.664
  101. Urra H, 2016, TRENDS CANCER, V2, P252, DOI 10.1016/j.trecan.2016.03.007
  102. Usui M, 2012, METABOLISM, V61, P1118, DOI 10.1016/j.metabol.2012.01.004
  103. Volmer R, 2013, P NATL ACAD SCI USA, V110, P4628, DOI 10.1073/pnas.1217611110
  104. Wagner M, 2011, CURR OPIN CLIN NUTR, V14, P367, DOI 10.1097/MCO.0b013e32834778d4
  105. Wang D, 2006, ENDOCRINOLOGY, V147, P943, DOI [10.1210/en.2005-0570, 10.1210/en.2006-0138]
  106. Wang M, 2016, NATURE, V529, P326, DOI 10.1038/nature17041
  107. Wang SY, 2012, CELL METAB, V16, P473, DOI 10.1016/j.cmet.2012.09.003
  108. Woehlbier U, 2011, TRENDS BIOCHEM SCI, V36, P329, DOI 10.1016/j.tibs.2011.03.001
  109. Xiao GZ, 2013, J BIOL CHEM, V288, P25350, DOI 10.1074/jbc.M113.470526
  110. Yamamoto K, 2010, MOL BIOL CELL, V21, P2975, DOI 10.1091/mbc.E09-02-0133
  111. Yamazaki H, 2009, J IMMUNOL, V183, P1480, DOI 10.4049/jimmunol.0900017
  112. Yang J, 2015, INT J MOL SCI, V16, P25744, DOI 10.3390/ijms161025744
  113. Yoshida H, 2006, J CELL BIOL, V172, P565, DOI 10.1083/jcb.200508145
  114. Yu QJ, 2015, P NATL ACAD SCI USA, V112, P15420, DOI 10.1073/pnas.1516362112
  115. Zeng LF, 2004, EMBO J, V23, P950, DOI 10.1038/sj.emboj.7600106
  116. Zhang C, 2012, TOXICOL LETT, V212, P229, DOI 10.1016/j.toxlet.2012.06.002
  117. Zhang CB, 2012, HEPATOLOGY, V55, P1070, DOI 10.1002/hep.24783
  118. Zhang HN, 2011, J PROTEOME RES, V10, P4757, DOI 10.1021/pr200553c
  119. Zhang KZ, 2011, EMBO J, V30, P1357, DOI 10.1038/emboj.2011.52
  120. Zhang KZ, 2006, CELL, V124, P587, DOI 10.1016/j.cell.2005.11.040
  121. Zhao YM, 2015, BRAIN RES BULL, V111, P27, DOI 10.1016/j.brainresbull.2014.12.006
  122. Zong WX, 2003, J CELL BIOL, V162, P59, DOI 10.1083/jcb.200302084