Acute Effects of Resistance and Functional-Task Exercises on Executive Function of Obese Older Adults: Two Counterbalanced, Crossover, Randomized Exploratory Studies

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PSYCHOLOGICAL ASSOC
Autores
ALMEIDA, Stephany Silva de
TEIXEIRA, Emerson Luiz
PAINELLI, Vitor de Salles
Citação
SPORT EXERCISE AND PERFORMANCE PSYCHOLOGY, v.10, n.1, p.102-113, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We explored the acute effect of different intensities of resistance exercise (RE: Study A) or functional-task exercise (FE; Study B) on cognitive function of obese older adults. In Study A, 15 obese older adults (age: 67 +/- 4 years; height: 1.61 +/- 0.05 m; body mass: 91.8 +/- 18.9 kg; body mass index: 35.3 +/- 7.1 kg/m(2); waist-hip ratio: 1.00 +/- 0.08) were submitted, in a counterbalanced, crossover, randomized fashion, to three conditions: (a) RE at 50% one-repetition maximum, (b) RE at 70% one-repetition maximum, and (c) control (CON, no exercise). In a similar design. in Study B, 16 obese older women (age: 65 +/- 2 years; height: 1.62 +/- 0.02 m; body mass: 94.0 +/- 8.8 kg; body mass index: 35.5 +/- 3.6 kg/m(2); waist-hip ratio: 0.97 +/- 0.04) were submitted to (a) FE and (b) CON. At pre- and postconditions, cognitive function was measured by the Stoop Test (ST, Parts A, B. and C) and the Trail Making Test (TMT, Parts A and B). In Study A, independent of intensity, RE significantly decreased time to complete the TMT-B, ST-B, and ST-C (all p < .05). whereas performance in CON was unchanged (all p > .05). Similar results were demonstrated in Study B. where time to complete TMT-A, TMT-B, ST-A. ST-B, and ST-C significantly reduced with FE (all p < .05), but not in CON (all p > .05). Both FE and RE acutely improved executive functions. Such positive effect seems to be independent of task, intensity, and executive function.
Palavras-chave
cognitive performance, resistance exercise, muscle function, obesity, elderly
Referências
  1. Alvarez JA, 2006, NEUROPSYCHOL REV, V16, P17, DOI 10.1007/s11065-006-9002-x
  2. Anish Eric J, 2005, Curr Sports Med Rep, V4, P18
  3. Arbuthnott K, 2000, J CLIN EXP NEUROPSYC, V22, P518, DOI 10.1076/1380-3395(200008)22:4;1-0;FT518
  4. Bayard S, 2011, ARCH CLIN NEUROPSYCH, V26, P653, DOI 10.1093/arclin/acr053
  5. Bazzazi N, 2019, PSYCHOL REP, V122, P2266, DOI 10.1177/0033294118800984
  6. Bischof GN, 2015, PSYCHOSOM MED, V77, P697, DOI 10.1097/PSY.0000000000000212
  7. Blaum CS, 2005, J AM GERIATR SOC, V53, P927, DOI 10.1111/j.1532-5415.2005.53300.x
  8. Borde R, 2015, SPORTS MED, V45, P1693, DOI 10.1007/s40279-015-0385-9
  9. BORG GAV, 1982, MED SCI SPORT EXER, V14, P377, DOI 10.1249/00005768-198205000-00012
  10. Brown LE, 2001, J EXERC PHYSL ONLINE, V4, P1
  11. Byrne C, 2016, SPORTS MED, V46, P1311, DOI 10.1007/s40279-016-0489-x
  12. Cassilhas RC, 2012, NEUROSCIENCE, V202, P309, DOI 10.1016/j.neuroscience.2011.11.029
  13. Cassilhas RC, 2007, MED SCI SPORT EXER, V39, P1401, DOI 10.1249/mss.0b013e318060111f
  14. Chan RCK, 2008, ARCH CLIN NEUROPSYCH, V23, P201, DOI 10.1016/j.acn.2007.08.010
  15. Chang YK, 2009, PSYCHOL SPORT EXERC, V10, P19, DOI 10.1016/j.psychsport.2008.05.004
  16. Coetsee C, 2017, EUR J APPL PHYSIOL, V117, P1617, DOI 10.1007/s00421-017-3651-8
  17. Cournot M, 2006, NEUROLOGY, V67, P1208, DOI 10.1212/01.wnl.0000238082.13860.50
  18. Davidson LE, 2009, ARCH INTERN MED, V169, P122, DOI 10.1001/archinternmed.2008.558
  19. Durlak JA, 2009, J PEDIATR PSYCHOL, V34, P917, DOI 10.1093/jpepsy/jsp004
  20. Fleck S.J., 2004, DESIGNING RESISTANCE, V3rd
  21. Fleuren MAH, 2012, BMC MUSCULOSKEL DIS, V13, DOI 10.1186/1471-2474-13-128
  22. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  23. Forte R, 2017, J NUTR HEALTH AGING, V21, P284, DOI 10.1007/s12603-016-0783-1
  24. Hunter SM, 2018, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00733
  25. Jensen GL, 2010, CURR OPIN CLIN NUTR, V13, P46, DOI 10.1097/MCO.0b013e32833309cf
  26. Johnson L, 2016, J AGING PHYS ACTIV, V24, P591, DOI 10.1123/japa.2015-0097
  27. Julious SA, 2005, PHARM STAT, V4, P287, DOI 10.1002/pst.185
  28. Kiliaan AJ, 2014, LANCET NEUROL, V13, P913, DOI 10.1016/S1474-4422(14)70085-7
  29. Kuehl R. O., 2000, REPEATED MEASURES DE
  30. Law LLF, 2014, AGE AGEING, V43, P813, DOI 10.1093/ageing/afu055
  31. Law LLF, 2013, OCCUP THER INT, V20, P185, DOI 10.1002/oti.1355
  32. Liu-Ambrose T, 2010, ARCH INTERN MED, V170, P170, DOI 10.1001/archinternmed.2009.494
  33. Lopez P, 2018, AGING CLIN EXP RES, V30, P889, DOI 10.1007/s40520-017-0863-z
  34. Loprinzi PD, 2018, PHYSIOL INT, V105, P285, DOI 10.1556/2060.105.2018.4.28
  35. McMorris T, 2016, PHYSIOL BEHAV, V165, P291, DOI 10.1016/j.physbeh.2016.08.011
  36. Nishiguchi S, 2015, J AM GERIATR SOC, V63, P1355, DOI 10.1111/jgs.13481
  37. Pedroso RV, 2018, J AGING PHYS ACTIV, V26, P97, DOI 10.1123/japa.2016-0147
  38. Alves CRR, 2012, J SPORT EXERCISE PSY, V34, P539, DOI 10.1123/jsep.34.4.539
  39. Sato K, 2010, ADV EXP MED BIOL, V662, P347, DOI 10.1007/978-1-4419-1241-1_50
  40. Soga K, 2018, J COGNIT ENHANCEMENT, V2, P200, DOI 10.1007/S41465-018-0079-Y
  41. Soukup V M, 1998, Appl Neuropsychol, V5, P65, DOI 10.1207/s15324826an0502_2
  42. Spreen O, 1998, COMPENDIUM NEUROPSYC
  43. Takeshima N, 2004, EUR J APPL PHYSIOL, V93, P173, DOI 10.1007/s00421-004-1193-3
  44. Tombaugh TN, 2004, ARCH CLIN NEUROPSYCH, V19, P203, DOI 10.1016/S0887-6177(03)00039-8
  45. Tomporowski PD, 2003, ACTA PSYCHOL, V112, P297, DOI 10.1016/S0001-6918(02)00134-8
  46. Troyer AK, 2006, AGING NEUROPSYCHOL C, V13, P20, DOI 10.1080/138255890968187
  47. Villareal DT, 2004, OBES RES, V12, P913, DOI 10.1038/oby.2004.111
  48. Watson P, 2005, AM J PHYSIOL-REG I, V288, pR1689, DOI 10.1152/ajpregu.00676.2004
  49. Whitmer RA, 2005, BMJ-BRIT MED J, V330, P1360, DOI 10.1136/bmj.38446.466238.E0
  50. World Health Organization, 2011, WAIST CIRCUMFERENCE