Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
ZEIDLERA, Julianna D.
DIAS, Matheus H.
ARMELIN, Hugo A.
Citação
FREE RADICAL BIOLOGY AND MEDICINE, v.103, p.199-208, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Extracellular protein disulfide isomerase (PDIA1) pool mediates thrombosis and vascular remodeling, however its externalization mechanisms remain unclear. We performed systematic pharmacological screening of secretory pathways affecting extracellular PDIA1 in endothelial cells (EC). We identified cell-surface (csPDIA1) and secreted non-particulated PDIA1 pools in EC. Such Golgi bypass also occurred for secreted PDIA1 in EC at baseline or after PMA, thrombin or ATP stimulation. Inhibitors of Type I, II and III unconventional routes, secretory lysosomes and recycling endosomes, including syntaxin-12 deletion, did not impair EC PDIA1 externalization This suggests predominantly Golgi-independent unconventional secretory route(s), which were GRASP55-independent. Also, these data reinforce a vesicular-type traffic for PDIA1. We further showed that PDIA1 traffic is ATP-independent, while actin or tubulin cytoskeletal disruption markedly increased EC PDIA1 secretion. Clathrin inhibition enhanced extracellular soluble PDIA1, suggesting dynamic cycling. Externalized PDIA1 represents <2% of intracellular PDIA1. PDIA1 was robustly secreted by physiological levels of arterial laminar shear in EC and supported alpha 5 integrin thiol oxidation. Such results help clarify signaling and homeostatic mechanisms involved in multiple (patho)physiological extracellular PDIA1 functions.
Palavras-chave
Protein disulfide isomerase, Golgi bypass, Shear stress, Endothelial cell, Vascular smooth muscle
Referências
  1. AKAGI S, 1988, J HISTOCHEM CYTOCHEM, V36, P1533
  2. AKAGI S, 1988, J HISTOCHEM CYTOCHEM, V36, P1069
  3. Andrei C, 1999, MOL BIOL CELL, V10, P1463
  4. Arbuzova A, 2000, BBA-BIOMEMBRANES, V1464, P35, DOI 10.1016/S0005-2736(99)00243-6
  5. Baldwin TA, 2002, J BIOL CHEM, V277, P50333, DOI 10.1074/jbc.M209075200
  6. Banerjee M, 2016, ARTERIOSCL THROM VAS, V36, P1056, DOI 10.1161/ATVBAHA.116.307625
  7. Benham AM, 2012, ANTIOXID REDOX SIGN, V16, P781, DOI 10.1089/ars.2011.4439
  8. Bi SG, 2011, P NATL ACAD SCI USA, V108, P10650, DOI 10.1073/pnas.1017954108
  9. Cho J, 2008, J CLIN INVEST, V118, P1123, DOI 10.1172/JCI34134
  10. Cho J, 2012, BLOOD, V120, P647, DOI 10.1182/blood-2011-08-372532
  11. Crescente M, 2016, ARTERIOSCL THROM VAS, V36, P1164, DOI 10.1161/ATVBAHA.116.307461
  12. D'Alessio P, 1998, FREE RADICAL BIO MED, V24, P979, DOI 10.1016/S0891-5849(97)00396-1
  13. Di Pietro R, 2006, J CELL BIOCHEM, V97, P782, DOI 10.1002/jcb.20686
  14. Dupont N, 2011, EMBO J, V30, P4701, DOI 10.1038/emboj.2011.398
  15. Essex DW, 2009, ANTIOXID REDOX SIGN, V11, P1191, DOI 10.1089/ARS.2008.2322
  16. Essex DW, 1999, BRIT J HAEMATOL, V104, P448, DOI 10.1046/j.1365-2141.1999.01197.x
  17. ESSEX DW, 1995, BLOOD, V86, P2168
  18. Flaumenhaft R, 2016, BLOOD, V128, P893, DOI 10.1182/blood-2016-04-636456
  19. Flaumenhaft R, 2013, TRENDS CARDIOVAS MED, V23, P264, DOI 10.1016/j.tcm.2013.03.001
  20. Flieger O, 2003, FEBS LETT, V551, P78, DOI 10.1016/S0014-5793(03)00900-1
  21. Fox PD, 2013, MOL BIOL CELL, V24, P2703, DOI 10.1091/mbc.E12-12-0895
  22. Furie B, 2014, CIRC RES, V114, P1162, DOI 10.1161/CIRCRESAHA.114.301808
  23. Gallina A, 2002, J BIOL CHEM, V277, P50579, DOI 10.1074/jbc.M204547200
  24. Gee HY, 2011, CELL, V146, P746, DOI 10.1016/j.cell.2011.07.021
  25. Givens C, 2016, ANTIOXID REDOX SIGN, V25, P373, DOI 10.1089/ars.2015.6493
  26. GOLDBERGER RF, 1964, J BIOL CHEM, V239, P1406
  27. Grieve A.G., 2011, COLD SPRING HERB PER, V3
  28. Hahm E, 2013, BLOOD, V121, P3789, DOI 10.1182/blood-2012-11-467985
  29. Hatahet F, 2009, ANTIOXID REDOX SIGN, V11, P2807, DOI 10.1089/ARS.2009.2466
  30. Henderson B, 2012, CELL STRESS CHAPERON, V17, P303, DOI 10.1007/s12192-011-0318-y
  31. Hughes RC, 1999, BBA-GEN SUBJECTS, V1473, P172, DOI 10.1016/S0304-4165(99)00177-4
  32. Jasuja R, 2012, J CLIN INVEST, V122, P2104, DOI 10.1172/JCI61228
  33. Jasuja R, 2010, BLOOD, V116, P4665, DOI 10.1182/blood-2010-04-278184
  34. Kean MJ, 2009, J CELL SCI, V122, P4089, DOI 10.1242/jcs.052761
  35. Keller M, 2008, CELL, V132, P818, DOI 10.1016/j.cell.2007.12.040
  36. Lahav J, 2000, FEBS LETT, V475, P89, DOI 10.1016/S0014-5793(00)01630-6
  37. Lahav J, 2002, BLOOD, V100, P2472, DOI 10.1182/blood-2002-12-0339
  38. Langer F, 2013, BLOOD, V121, P2324, DOI 10.1182/blood-2012-10-460493
  39. Laurindo FRM, 2014, ANTIOXID REDOX SIGN, V20, P2755, DOI 10.1089/ars.2013.5605
  40. Laurindo FRM, 2012, FREE RADICAL BIO MED, V52, P1954, DOI 10.1016/j.freeradbiomed.2012.02.037
  41. MANDEL R, 1993, P NATL ACAD SCI USA, V90, P4112, DOI 10.1073/pnas.90.9.4112
  42. Manneville JB, 2003, J CELL SCI, V116, P3927, DOI 10.1242/jcs.00672
  43. Markovic I, 2004, BLOOD, V103, P1586, DOI 10.1182/blood-2003-05-1390
  44. Meirelles T, 2016, INT J BIOCHEM CELL B, V71, P81, DOI 10.1016/j.biocel.2015.12.009
  45. Mezghrani A, 2000, J BIOL CHEM, V275, P1920, DOI 10.1074/jbc.275.3.1920
  46. Molinari M, 2002, J CELL BIOL, V158, P247, DOI 10.1083/jcb.200204122
  47. Mor-Cohen R, 2016, ANTIOXID REDOX SIGN, V24, P16, DOI 10.1089/ars.2014.6149
  48. Moraes MS, 2014, ARCH BIOCHEM BIOPHYS, V558, P14, DOI 10.1016/j.abb.2014.06.011
  49. Soares A.I. Moretti, 2016, ARCH BIOCH BIOPHYS
  50. Nickel W, 2009, NAT REV MOL CELL BIO, V10, P148, DOI 10.1038/nrm2617
  51. Okazaki Y, 2000, J BIOL CHEM, V275, P35751, DOI 10.1074/jbc.M007476200
  52. Orr AW, 2006, MOL BIOL CELL, V17, P4686, DOI 10.1091/mbc.E06-04-0289
  53. Popescu NI, 2010, BLOOD, V116, P993, DOI 10.1182/blood-2009-10-249607
  54. Rabouille C, 2012, J CELL SCI, V125, P5251, DOI 10.1242/jcs.103630
  55. Radons J, 2016, CELL STRESS CHAPERON, V21, P379, DOI 10.1007/s12192-016-0676-6
  56. Reinhardt C, 2008, J CLIN INVEST, V118, P1110, DOI 10.1172/JCI32376
  57. Rhee WJ, 2010, P NATL ACAD SCI USA, V107, P6858, DOI 10.1073/pnas.1000444107
  58. Robert J, 1999, J IMMUNOL, V163, P4133
  59. RUBARTELLI A, 1990, EMBO J, V9, P1503
  60. Schotman H, 2008, DEV CELL, V14, P171, DOI [10.1016/j.devcel.2007.12.006, 10.1016/j.devce1.2007.12.006]
  61. Sharda A, 2015, BLOOD, V125, P1633, DOI 10.1182/blood-2014-08-597419
  62. Shin BK, 2003, J BIOL CHEM, V278, P7607, DOI 10.1074/jbc.M210455200
  63. Swiatkowska M, 2008, FEBS J, V275, P1813, DOI 10.1111/j.1742-4658.2008.06339.x
  64. TAKEMOTO H, 1992, ARCH BIOCHEM BIOPHYS, V296, P129, DOI 10.1016/0003-9861(92)90554-A
  65. Tanaka LY, 2016, HYPERTENSION, V67, P613, DOI 10.1161/HYPERTENSIONAHA.115.06177
  66. Tarr JM, 2010, J MOL BIOL, V401, P799, DOI 10.1016/j.jmb.2010.06.064
  67. Tellier E, 2007, MOL CELL BIOL, V27, P2997, DOI 10.1128/MCB.01485-06
  68. TERADA K, 1995, J BIOL CHEM, V270, P20410
  69. Thery C., 2006, CURR PROTOC CELL BIO, V3, P3, DOI 10.1002/0471143030.CB0322S30
  70. Tsai YL, 2015, J BIOL CHEM, V290, P8049, DOI 10.1074/jbc.M114.618736
  71. Vallon M, 2012, BIOCHEM J, V441, P937, DOI 10.1042/BJ20111682
  72. Wan SW, 2012, J CELL BIOCHEM, V113, P1681, DOI 10.1002/jcb.24037
  73. Wiersma VR, 2015, FRONT ONCOL, V5, DOI 10.3389/fonc.2015.00007
  74. Wiest DL, 1997, P NATL ACAD SCI USA, V94, P1884, DOI 10.1073/pnas.94.5.1884
  75. Willems SH, 2010, BIOCHEM J, V428, P439, DOI 10.1042/BJ20100179
  76. YOSHIMORI T, 1990, J BIOL CHEM, V265, P15984
  77. Zehe C, 2006, P NATL ACAD SCI USA, V103, P15479, DOI 10.1073/pnas.0605997103
  78. Zemskov EA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019414
  79. Zhang HY, 2016, SCI REP-UK, V6, DOI 10.1038/srep31319