Gestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposure

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorEUCLYDES, Veronica
dc.contributor.authorGOMES, Catarina
dc.contributor.authorGOUVEIA, Gisele
dc.contributor.authorGASTALDI, Vinicius Daguano
dc.contributor.authorFELTRIN, Arthur Sant'Anna
dc.contributor.authorCAMILO, Caroline
dc.contributor.authorVIEIRA, Rossana Pulcineli
dc.contributor.authorFELIPE-SILVA, Aloisio
dc.contributor.authorGRISI, Sandra
dc.contributor.authorFINK, Gunther
dc.contributor.authorBRENTANI, Alexandra
dc.contributor.authorBRENTANI, Helena
dc.date.accessioned2023-02-23T14:55:47Z
dc.date.available2023-02-23T14:55:47Z
dc.date.issued2022
dc.description.abstractBackground Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. Results Using the Western Region Birth Cohort (ROC-Sao Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R-2 = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R-2 = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. Conclusion Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition.eng
dc.description.indexMEDLINE
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [001]
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2018/18560-6]
dc.identifier.citationCLINICAL EPIGENETICS, v.14, n.1, article ID 152, 10p, 2022
dc.identifier.doi10.1186/s13148-022-01374-9
dc.identifier.eissn1868-7083
dc.identifier.issn1868-7075
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/51547
dc.language.isoeng
dc.publisherBMCeng
dc.relation.ispartofClinical Epigenetics
dc.rightsopenAccesseng
dc.rights.holderCopyright BMCeng
dc.subjectDNA methylation ageeng
dc.subjectGestational age accelerationeng
dc.subjectPrenatal psychosocial stresseng
dc.subjectSex biaseng
dc.subject.otherfetaleng
dc.subject.otherglucocorticoidseng
dc.subject.othercortisoleng
dc.subject.otherhealtheng
dc.subject.otherchildeng
dc.subject.wosOncologyeng
dc.subject.wosGenetics & Heredityeng
dc.titleGestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposureeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countrySuíça
hcfmusp.affiliation.countryisoch
hcfmusp.author.externalFELTRIN, Arthur Sant'Anna:Fed Univ ABC, Ctr Math Computat & Cognit, Sao Bernardo Do Campo, Brazil
hcfmusp.author.externalFINK, Gunther:Univ Basel, Swiss Trop & Publ Hlth Inst, Dept Epidmiol & Publ Hlth, Basel, Switzerland
hcfmusp.citation.scopus3
hcfmusp.contributor.author-fmusphcVERONICA LUIZA VALE EUCLYDES COLOVATI
hcfmusp.contributor.author-fmusphcCATARINA DOS SANTOS GOMES
hcfmusp.contributor.author-fmusphcGISELE RODRIGUES GOUVEIA
hcfmusp.contributor.author-fmusphcVINICIUS DAGUANO GASTALDI
hcfmusp.contributor.author-fmusphcCAROLINE PEREZ CAMILO
hcfmusp.contributor.author-fmusphcROSSANA PULCINELI VIEIRA FRANCISCO
hcfmusp.contributor.author-fmusphcALOISIO SOUZA FELIPE DA SILVA
hcfmusp.contributor.author-fmusphcSANDRA JOSEFINA FERRAZ ELLERO GRISI
hcfmusp.contributor.author-fmusphcALEXANDRA VALERIA MARIA BRENTANI
hcfmusp.contributor.author-fmusphcHELENA PAULA BRENTANI
hcfmusp.description.articlenumber152
hcfmusp.description.issue1
hcfmusp.description.volume14
hcfmusp.origemWOS
hcfmusp.origem.pubmed36443840
hcfmusp.origem.scopus2-s2.0-85142816964
hcfmusp.origem.wosWOS:000889558700003
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceBarker ED, 2018, DEV PSYCHOPATHOL, V30, P1145, DOI 10.1017/S0954579418000330eng
hcfmusp.relation.referenceBinder AM, 2018, EPIGENETICS-US, V13, P85, DOI 10.1080/15592294.2017.1414127eng
hcfmusp.relation.referenceBohlin J, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1063-4eng
hcfmusp.relation.referenceBraithwaite EC, 2018, J DEV ORIG HLTH DIS, V9, P425, DOI 10.1017/S2040174418000181eng
hcfmusp.relation.referenceBraithwaite EC, 2017, PHYSIOL BEHAV, V175, P31, DOI 10.1016/j.physbeh.2017.03.017eng
hcfmusp.relation.referenceBuurstede JC, 2022, NEUROPHARMACOLOGY, V216, DOI 10.1016/j.neuropharm.2022.109186eng
hcfmusp.relation.referenceChen BH, 2016, AGING-US, V8, P1844, DOI 10.18632/aging.101020eng
hcfmusp.relation.referenceDanese A, 2017, ANNU REV PSYCHOL, V68, P517, DOI 10.1146/annurev-psych-010416-044208eng
hcfmusp.relation.referenceDieckmann Linda, 2021, Clin Epigenetics, V13, P97, DOI 10.1186/s13148-021-01080-yeng
hcfmusp.relation.referenceFransquet PD, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0656-7eng
hcfmusp.relation.referenceGirchenko P, 2017, CLIN EPIGENETICS, V9, DOI 10.1186/s13148-017-0349-zeng
hcfmusp.relation.referenceHan VX, 2021, NAT REV NEUROL, V17, P564, DOI 10.1038/s41582-021-00530-8eng
hcfmusp.relation.referenceKhouja JN, 2018, CLIN EPIGENETICS, V10, DOI 10.1186/s13148-018-0520-1eng
hcfmusp.relation.referenceKnight AK, 2018, J PEDIATR-US, V198, P168, DOI 10.1016/j.jpeds.2018.02.074eng
hcfmusp.relation.referenceKnight AK, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1068-zeng
hcfmusp.relation.referenceKoen N, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-021-01434-3eng
hcfmusp.relation.referenceMaschietto M, 2017, SCI REP-UK, V7, DOI 10.1038/srep44547eng
hcfmusp.relation.referenceMcGill MG, 2022, BIOL PSYCHIAT, V91, P303, DOI 10.1016/j.biopsych.2021.07.025eng
hcfmusp.relation.referenceMoisiadis VG, 2014, NAT REV ENDOCRINOL, V10, P403, DOI 10.1038/nrendo.2014.74eng
hcfmusp.relation.referenceMoisiadis VG, 2014, NAT REV ENDOCRINOL, V10, P391, DOI 10.1038/nrendo.2014.73eng
hcfmusp.relation.referenceMoney KM, 2018, MOL PSYCHIATR, V23, DOI 10.1038/mp.2017.191eng
hcfmusp.relation.referenceOblak L, 2021, AGEING RES REV, V69, DOI 10.1016/j.arr.2021.101348eng
hcfmusp.relation.referencePalma-Gudiel H, 2019, CLIN EPIGENETICS, V11, DOI 10.1186/s13148-019-0674-5eng
hcfmusp.relation.referenceReed MD, 2020, NATURE, V577, P249, DOI 10.1038/s41586-019-1843-6eng
hcfmusp.relation.referenceScheinost D, 2020, NEUROPSYCHOPHARMACOL, V45, P1272, DOI 10.1038/s41386-020-0677-0eng
hcfmusp.relation.referenceSchepanski S, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02186eng
hcfmusp.relation.referenceSchroeder JW, 2011, EPIGENETICS-US, V6, P1498, DOI 10.4161/epi.6.12.18296eng
hcfmusp.relation.referenceSeale K, 2022, NAT REV GENET, V23, P585, DOI 10.1038/s41576-022-00477-6eng
hcfmusp.relation.referenceSolomon O, 2022, MUTAT RES-REV MUTAT, V789, DOI 10.1016/j.mrrev.2022.108415eng
hcfmusp.relation.referenceSuarez A, 2018, J AM ACAD CHILD PSY, V57, P321, DOI 10.1016/j.jaac.2018.02.011eng
hcfmusp.relation.referenceZoubovsky SP, 2022, TRANSL PSYCHIAT, V12, DOI 10.1038/s41398-022-01785-5eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication3c1e4f44-b1d9-4a33-80c2-9e1cb75812be
relation.isAuthorOfPublicationd4d44f40-4608-48eb-99a2-896c87f639e9
relation.isAuthorOfPublication2d1af19a-1f09-486f-a29c-97ca3f1872b5
relation.isAuthorOfPublication634239fd-6b58-4d3e-a321-d76b2a6d9a6d
relation.isAuthorOfPublicationed28860c-326a-46ce-a62a-d592f2728a46
relation.isAuthorOfPublicationc9b8107b-5236-482d-a67f-52d0be770457
relation.isAuthorOfPublicationf4632426-e1b1-4b52-917e-c3643618b1f4
relation.isAuthorOfPublication2962bfb7-b168-4aff-b9b1-c3e0a038aacd
relation.isAuthorOfPublication2a610711-6cad-4575-bec0-1d5c7cb663f7
relation.isAuthorOfPublication302b2020-cbc3-4a79-8697-ece1308a4bdc
relation.isAuthorOfPublication.latestForDiscovery3c1e4f44-b1d9-4a33-80c2-9e1cb75812be
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_EUCLYDES_Gestational_age_acceleration_is_associated_with_epigenetic_biomarkers_2022.PDF
Tamanho:
1.08 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)