Time-dependent vaccine efficacy estimation quantified by a mathematical model

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
LORIA, Jennifer
ALBANI, Vinicius V. L.
COVAS, Dimas T.
STRUCHINER, Claudio J.
ZUBELLI, Jorge P.
Citação
PLOS ONE, v.18, n.5, article ID e0285466, 18p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this paper we calculate the variation of the estimated vaccine efficacy (VE) due to the time-dependent force of infection resulting from the difference between the moment the Clinical Trial (CT) begins and the peak in the outbreak intensity. Using a simple mathematical model we tested the hypothesis that the time difference between the moment the CT begins and the peak in the outbreak intensity determines substantially different values for VE. We exemplify the method with the case of the VE efficacy estimation for one of the vaccines against the new coronavirus SARS-CoV-2.
Palavras-chave
Referências
  1. Albani V, 2021, BMC INFECT DIS, V21, DOI 10.1186/s12879-021-06780-7
  2. Albani VVL, 2021, VACCINE, V39, P6088, DOI 10.1016/j.vaccine.2021.08.098
  3. Albani VVL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-88281-w
  4. Amaku M, 2021, THEOR BIOL MED MODEL, V18, DOI 10.1186/s12976-021-00143-0
  5. [Anonymous], 2010, DESIGN ANAL VACCINE
  6. Bellomo N, 2021, MATH MOD METH APPL S, V31, P1821, DOI 10.1142/S0218202521500408
  7. Bellomo N, 2020, MATH MOD METH APPL S, V30, P1591, DOI [10.1142/S0218202520500323, 10.1142/s0218202520500323]
  8. BLACKWELDER WC, 1993, STAT MED, V12, P691, DOI 10.1002/sim.4780120708
  9. Campos EL, 2021, INFECT DIS MODEL, V6, P751, DOI 10.1016/j.idm.2021.05.003
  10. Delany I, 2014, EMBO MOL MED, V6, P708, DOI 10.1002/emmm.201403876
  11. Garon JR, 2015, CURR OPIN IMMUNOL, V36, P8, DOI 10.1016/j.coi.2015.04.003
  12. Halloran ME, 1997, AM J EPIDEMIOL, V146, P789
  13. Hay JA, 2021, SCIENCE, V373, DOI 10.1126/science.abh0635
  14. Hodgson SH, 2021, LANCET INFECT DIS, V21, pE26, DOI 10.1016/S1473-3099(20)30773-8
  15. Kaslow DC, 2021, NPJ VACCINES, V6, DOI 10.1038/s41541-021-00316-5
  16. Lal H, 2015, NEW ENGL J MED, V372, P2087, DOI 10.1056/NEJMoa1501184
  17. Malkin EM, 2005, VACCINE, V23, P3131, DOI 10.1016/j.vaccine.2004.12.019
  18. Mao HH, 2020, ADV BIOCHEM ENG BIOT, V171, P155, DOI 10.1007/10_2019_107
  19. Martcheva M., 2013, INTRO MATH EPIDEMIOL
  20. Massad E, 2010, TROP MED INT HEALTH, V15, P120, DOI 10.1111/j.1365-3156.2009.02413.x
  21. ORENSTEIN WA, 1985, B WORLD HEALTH ORGAN, V63, P1055
  22. Perrett KP, 2010, CLIN INFECT DIS, V50, P1601, DOI 10.1086/652765
  23. Scheppler L, 2021, VACCINE
  24. Struchiner CJ, 2007, EPIDEMIOL INFECT, V135, P181, DOI 10.1017/S0950268806006716
  25. Struchiner C J, 1994, Cad Saude Publica, V10 Suppl 2, P310
  26. Villa LL, 2005, LANCET ONCOL, V6, P271, DOI 10.1016/S1470-2045(05)70101-7
  27. Vynnycky E., 2010, INTRO INFECT DIS MOD
  28. World Health Organization, 2016, GLOB IMM VIS STRAT 2