Comparative efficacy, tolerability, and acceptability of pharmacological interventions for the treatment of children, adolescents, and young adults with Tourette?s syndrome: a systematic review and network meta-analysis

Nenhuma Miniatura disponível
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
BEHLING, Emily
LANDEROS-WEISENBERGER, Angeli
LEVINE, Jessica L. S.
WANG, Ziyu
BLOCH, Michael H.
Citação
LANCET CHILD & ADOLESCENT HEALTH, v.7, n.2, p.112-126, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background In clinical practice guidelines there is no consensus about the medications that should be initially offered to children and young people with Tourette's syndrome. To provide a rigorous evidence base that could help guide decision making and guideline development, we aimed to compare the efficacy, tolerability, and acceptability of pharmacological interventions for Tourette's syndrome. Methods For this systematic review and network meta-analysis, we searched the Cochrane Central Register of Controlled Trials, Embase, PsycINFO, PubMed, Web of Science, the WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov, for published and unpublished studies from database inception to Nov 19, 2021. We included double-blind randomised controlled trials of any medication administered as a monotherapy for at least 1 week against another medication or placebo in children and adolescents (aged =4 years and =18 years), adults (>18 years), or both, diagnosed with Tourette's syndrome according to standardised criteria. We excluded studies that exclusively recruited participants with comorbid attention-deficit hyperactivity disorder or obsessive-compulsive disorder. The primary outcome was change in severity of tic symptoms (efficacy). Secondary outcomes were treatment discontinuations due to adverse events (tolerability) and for any reason (acceptability). Pharmacological interventions were examined considering medication categories and medications individually in separate analyses. Summary data were extracted and pooled with a random-effects network meta-analysis to calculate standardised mean differences for efficacy and odds ratios for tolerability and acceptability, with 95% CIs. The Confidence in Network Meta-Analysis (CINeMA) framework was used to assess the certainty of evidence. The protocol was pre-registered in PROSPERO (CRD42022296975). Findings Of the 12 088 records identified through the database search, 88 records representing 39 randomised controlled trials were included in the network meta-analysis; these 39 randomised controlled trials comprised 4578 partici-pants (mean age 11 center dot 8 [SD 4 center dot 5] years; 3676 [80 center dot 8%] male participants) and evaluated 23 individual medications distributed across six medication categories. When considering medication categories, first-generation (standardised mean difference [SMD] -0 center dot 65 [95% CI -0 center dot 79 to -0 center dot 51]; low certainty of evidence) and second-generation (-0 center dot 71 [-0 center dot 88 to -0 center dot 54]; moderate certainty of evidence) antipsychotic drugs, as well as a-2 agonists (-0 center dot 21 [-0 center dot 39 to -0 center dot 03]; moderate certainty of evidence), were more efficacious than placebo. First-generation and second-generation antipsychotic drugs did not differ from each other (SMD 0 center dot 06 [95% CI -0 center dot 14 to 0 center dot 25]; low certainty of evidence). However, both first-generation (SMD 0 center dot 44 [95% CI 0 center dot 21 to 0 center dot 66]) and second-generation (0 center dot 49 [0 center dot 25 to 0 center dot 74]) antipsychotic drugs outperformed a-2 agonists, with moderate certainty of evidence. Similar findings were observed when individual medications were considered: aripiprazole (SMD -0 center dot 60 [95% CI -0 center dot 83 to -0 center dot 38]), haloperidol (-0 center dot 51 [-0 center dot 88 to -0 center dot 14]), olanzapine (-0 center dot 83 [-1 center dot 49 to -0 center dot 18]), pimozide (-0 center dot 48 [-0 center dot 84 to -0 center dot 12]), risperidone (-0 center dot 66 [-0 center dot 98 to -0 center dot 34]), and clonidine (-0 center dot 20 [-0 center dot 37 to -0 center dot 02]) all outperformed placebo, with moderate certainty of evidence. Antipsychotic medications did not differ from each other, but there was low to very low certainty of evidence for these comparisons. However, aripiprazole (SMD -0 center dot 40 [95% CI -0 center dot 69 to -0 center dot 12]) and risperidone (-0 center dot 46 [-0 center dot 82 to -0 center dot 11]) outperformed clonidine, with moderate certainty of evidence. Heterogeneity or inconsistency only emerged for a few comparisons. In terms of tolerability and acceptability, there were no relevant findings for any of the efficacious medication categories or individual medications against each other or placebo, but there was low to very low certainty of evidence associated with these comparisons. Interpretation Our analyses show that antipsychotic drugs are the most efficacious intervention for Tourette's syndrome, while a-2 agonists are also more efficacious than placebo and could be chosen by those who elect not to take antipsychotic drugs. Shared decision making about the degree of tic-related severity and distress or impairment, the trade-offs of efficacy and safety between antipsychotic drugs and a-2 agonists, and other highly relevant individual factors that could not be addressed in the present analysis, should guide the choice of medication for children and young people with Tourette's syndrome.
Palavras-chave
Referências
  1. [Anonymous], 1988, TOURETTES SYNDROME T
  2. Bachmann CJ, 2015, EUR CHILD ADOLES PSY, V24, P199, DOI 10.1007/s00787-014-0563-6
  3. Baizabal-Carvallo JF, 2023, CNS SPECTRUMS, V28, P205, DOI 10.1017/S1092852922000074
  4. Balduzzi S, 2019, EVID-BASED MENT HEAL, V22, P153, DOI 10.1136/ebmental-2019-300117
  5. Bloch Michael H, 2006, Arch Pediatr Adolesc Med, V160, P65, DOI 10.1001/archpedi.160.1.65
  6. Bruggeman R, 2001, J CLIN PSYCHIAT, V62, P50, DOI 10.4088/JCP.v62n0111
  7. Carbon M, 2018, WORLD PSYCHIATRY, V17, P330, DOI 10.1002/wps.20579
  8. Carulla-Roig M, 2018, J CHILD ADOL PSYCHOP, V28, P637, DOI 10.1089/cap.2017.0169
  9. Cavanna AE, 2022, EXPERT OPIN PHARMACO, V23, P1523, DOI 10.1080/14656566.2022.2107902
  10. Chaimani A, 2012, RES SYNTH METHODS, V3, P161, DOI 10.1002/jrsm.57
  11. Chevance A, 2020, LANCET PSYCHIAT, V7, P692, DOI 10.1016/S2215-0366(20)30191-7
  12. Cipriani A, 2016, LANCET, V388, P881, DOI 10.1016/S0140-6736(16)30385-3
  13. Coffey B, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.29397
  14. Cohen SC, 2013, NEUROSCI BIOBEHAV R, V37, P997, DOI 10.1016/j.neubiorev.2012.11.013
  15. Conelea CA, 2011, CHILD PSYCHIAT HUM D, V42, P219, DOI 10.1007/s10578-010-0211-4
  16. Cortese S, 2018, LANCET PSYCHIAT, V5, P727, DOI 10.1016/S2215-0366(18)30269-4
  17. Cothros N, 2020, EXPERT OPIN PHARMACO, V21, P567, DOI 10.1080/14656566.2020.1721465
  18. Cummings DD, 2002, CLIN NEUROPHARMACOL, V25, P325, DOI 10.1097/00002826-200211000-00009
  19. Dion Y, 2002, J CLIN PSYCHOPHARM, V22, P31, DOI 10.1097/00004714-200202000-00006
  20. Dobson ET, 2019, J CLIN PSYCHIAT, V80, DOI 10.4088/JCP.17r12064
  21. Du YS, 2008, AUST NZ J PSYCHIAT, V42, P807, DOI 10.1080/00048670802277222
  22. Farhat LC, 2022, MOL PSYCHIATR, V27, P1562, DOI 10.1038/s41380-021-01391-9
  23. Farhat LC, 2021, J CHILD PSYCHOL PSYC, V62, P701, DOI 10.1111/jcpp.13374
  24. Fernandez de la Cruz L, 2020, NEUROSCI BIOBEHAV R, V119, P514, DOI 10.1016/j.neubiorev.2020.11.005
  25. Furukawa TA, 2006, J CLIN EPIDEMIOL, V59, P7, DOI 10.1016/j.jclinepi.2005.06.006
  26. Gaffney GR, 2002, J AM ACAD CHILD PSY, V41, P330, DOI 10.1097/00004583-200203000-00013
  27. Gilbert DL, 2000, NEUROLOGY, V54, P1310, DOI 10.1212/WNL.54.6.1310
  28. Gilbert DL, 2004, J AM ACAD CHILD PSY, V43, P206, DOI 10.1097/00004583-200402000-00017
  29. Gilbert DL, 2003, NEUROLOGY, V60, P606, DOI 10.1212/01.WNL.0000044058.64647.7E
  30. Gilbert DL, 2018, MOVEMENT DISORD, V33, P1272, DOI 10.1002/mds.27457
  31. GOETZ CG, 1987, ANN NEUROL, V21, P307, DOI 10.1002/ana.410210313
  32. GOETZ CG, 1987, NEUROLOGY, V37, P1542, DOI 10.1212/WNL.37.9.1542
  33. Gordon M, 2013, F1000POSTERS
  34. [郭圣璇 Guo Shengxuan], 2018, [中草药, Chinese Traditional and Herbal Drugs], V49, P891
  35. HARCHERIK DF, 1984, J AM ACAD CHILD PSY, V23, P153, DOI 10.1097/00004583-198403000-00006
  36. Higgins JPT., 2019, COCHRANE HDB SYSTEMA
  37. Hirota T, 2014, J AM ACAD CHILD PSY, V53, P153, DOI 10.1016/j.jaac.2013.11.009
  38. Hu S, 2014, XIANDAI YAOWU YU LIN, V29, P1044
  39. Hutton B, 2015, ANN INTERN MED, V162, P777, DOI 10.7326/M14-2385
  40. Jankovic J, 2010, J NEUROL NEUROSUR PS, V81, P70, DOI 10.1136/jnnp.2009.185348
  41. Jankovic J, 2021, JAMA NETW OPEN, V4, DOI 10.1001/jamanetworkopen.2021.28204
  42. Ji W, 2005, ZHONGGUO LINCHUANG K, V9, P66
  43. Khalafallah A, 2010, MEDITERR J HEMATOL I, V2, DOI [10.4084/MJHID.2010.005, 10.1136/bmj.l4898]
  44. Konig J, 2013, STAT MED, V32, P5414, DOI 10.1002/sim.6001
  45. Krahn U, 2013, BMC MED RES METHODOL, V13, DOI 10.1186/1471-2288-13-35
  46. Kurlan R, 2012, MOVEMENT DISORD, V27, P775, DOI 10.1002/mds.24919
  47. LECKMAN JF, 1991, ARCH GEN PSYCHIAT, V48, P324, DOI 10.1001/archpsyc.1991.01810280040006
  48. LECKMAN JF, 1989, J AM ACAD CHILD PSY, V28, P566, DOI 10.1097/00004583-198907000-00015
  49. Leucht S, 2016, EUR ARCH PSY CLIN N, V266, P477, DOI 10.1007/s00406-016-0715-4
  50. Li N, 2010, SHI YONG ER KE LIN C, V25, P1604
  51. Ma Rong, 2014, Zhongguo Zhong Xi Yi Jie He Za Zhi, V34, P426
  52. Martino D, 2017, MOVEMENT DISORD, V32, P467, DOI 10.1002/mds.26891
  53. Murphy TK, 2017, J CHILD ADOL PSYCHOP, V27, P762, DOI 10.1089/cap.2017.0024
  54. Nicolson R, 2005, J AM ACAD CHILD PSY, V44, P640, DOI 10.1097/01.chi.0000163279.39598.44
  55. Nikolakopoulou A, 2020, PLOS MED, V17, DOI 10.1371/journal.pmed.1003082
  56. Pringsheim T, 2019, NEUROLOGY, V92, P896, DOI 10.1212/WNL.0000000000007466
  57. Pringsheim T, 2019, NEUROLOGY, V92, P907, DOI 10.1212/WNL.0000000000007467
  58. Rhodes KM, 2015, J CLIN EPIDEMIOL, V68, P52, DOI 10.1016/j.jclinepi.2014.08.012
  59. Robertson MM, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2016.97
  60. Roessner V, 2022, EUR CHILD ADOLES PSY, V31, P425, DOI 10.1007/s00787-021-01899-z
  61. Rucker G., 2022, NETMETA NETWORK META
  62. Rucker G, 2015, BMC MED RES METHODOL, V15, DOI 10.1186/s12874-015-0060-8
  63. Salanti G, 2012, RES SYNTH METHODS, V3, P80, DOI 10.1002/jrsm.1037
  64. Sallee F, 2017, J CHILD ADOL PSYCHOP, V27, P771, DOI 10.1089/cap.2016.0026
  65. Sallee FR, 2000, J AM ACAD CHILD PSY, V39, P292, DOI 10.1097/00004583-200003000-00010
  66. Sallee FR, 1997, AM J PSYCHIAT, V154, P1057
  67. Scahill L, 2003, NEUROLOGY, V60, P1130, DOI 10.1212/01.WNL.0000055434.39968.67
  68. Scharf JM, 2015, MOVEMENT DISORD, V30, P221, DOI 10.1002/mds.26089
  69. Schneider-Thoma J, 2019, LANCET PSYCHIAT, V6, P753, DOI 10.1016/S2215-0366(19)30223-8
  70. Schneider-Thoma J, 2018, LANCET PSYCHIAT, V5, P653, DOI 10.1016/S2215-0366(18)30177-9
  71. Shapiro AK, 1988, TOURETTES SYNDROME T
  72. SHAPIRO E, 1989, ARCH GEN PSYCHIAT, V46, P722
  73. Solmi M, 2020, WORLD PSYCHIATRY, V19, P214, DOI 10.1002/wps.20765
  74. Toren P, 2005, J CLIN PSYCHIAT, V66, P499, DOI 10.4088/JCP.v66n0413
  75. Turner RM, 2012, INT J EPIDEMIOL, V41, P818, DOI 10.1093/ije/dys041
  76. Weisman H, 2013, NEUROSCI BIOBEHAV R, V37, P1162, DOI 10.1016/j.neubiorev.2012.09.008
  77. Whittington C, 2016, J CHILD PSYCHOL PSYC, V57, P988, DOI 10.1111/jcpp.12556
  78. Wolicki SB, 2020, PSYCHIAT RES, V293, DOI 10.1016/j.psychres.2020.113400
  79. Yang Na, 2016, Zhongguo Zhong Yao Za Zhi, V41, P3100, DOI 10.4268/cjcmm20161627
  80. Yoo HK, 2013, J CLIN PSYCHIAT, V74, pE772, DOI 10.4088/JCP.12m08189
  81. Zhao L, 2010, J INT MED RES, V38, P169, DOI 10.1177/147323001003800119
  82. Zheng Y, 2016, J CHILD PSYCHOL PSYC, V57, P74, DOI 10.1111/jcpp.12432