Glioneuronal and Neuronal Tumors: Who? When? Where? An Update Based on the 2021 World Health Organization Classification

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorAYRES, A. S.
dc.contributor.authorBANDEIRA, G. A.
dc.contributor.authorFERRACIOLLI, S. F.
dc.contributor.authorTAKAHASHI, J. T.
dc.contributor.authorMORENO, R. A.
dc.contributor.authorGODOY, L. F. de Souza
dc.contributor.authorCASAL, Y. R.
dc.contributor.authorLIMA, L. G. C. A. de
dc.contributor.authorFRASSETO, F. P.
dc.contributor.authorLUCATO, L. T.
dc.date.accessioned2024-03-13T20:02:32Z
dc.date.available2024-03-13T20:02:32Z
dc.date.issued2023
dc.description.abstractNeuronal and glioneuronal tumors usually have a benign course and may have typical imaging characteristics, allowing their diagnosis based on MR imaging findings. The most common lesions are dysembryoplastic neuroepithelial tumors and gangliogliomas, which have typical imaging characteristics. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System, recently published in 2021, places greater emphasis on molecular markers to classify tumors of the CNS, leading to extensive changes in the classification of tumors, including neuronal and glioneuronal tumors. The 2021 revision included 3 new tumors types: multinodular and vacuolating neuronal tumor, diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (a provisional type), and myxoid glioneuronal tumor. Following these recent changes in the World Health Organization classification, we aimed to review the main imaging features of these lesions in relation to their histopathologic and molecular features. Learning Objectives: To list the neuronal and glioneuronal tumors; recognize the main imaging findings and histologic characteristics of neuronal and glioneuronal tumors; know the typical location of each neuronal and glioneuronal tumor; and become familiar with the main molecular alterations of neuronal and glioneuronal tumors to better understand their behavioreng
dc.description.indexPubMed
dc.description.indexScopus
dc.description.indexDimensions
dc.identifier.citationNEUROGRAPHICS, v.13, n.1, 2023
dc.identifier.doi10.3174/ng.2100047
dc.identifier.issn2637-8329
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/58669
dc.language.isoeng
dc.publisherAMERICAN SOCIETY OF NEURORADIOLOGYeng
dc.relation.ispartofNeurographics
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright AMERICAN SOCIETY OF NEURORADIOLOGYeng
dc.titleGlioneuronal and Neuronal Tumors: Who? When? Where? An Update Based on the 2021 World Health Organization Classificationeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcALINE SGNOLF AYRES
hcfmusp.contributor.author-fmusphcGABRIELA ALENCAR BANDEIRA RODRIGUES
hcfmusp.contributor.author-fmusphcSUELY FAZIO FERRACIOLLI
hcfmusp.contributor.author-fmusphcJORGE TOMIO TAKAHASHI
hcfmusp.contributor.author-fmusphcRAQUEL ANDRADE MORENO
hcfmusp.contributor.author-fmusphcLUIS FILIPE DE SOUZA GODOY
hcfmusp.contributor.author-fmusphcYURI REIS CASAL
hcfmusp.contributor.author-fmusphcLUIZ GUILHERME CERNAGLIA AURELIANO DE LIMA
hcfmusp.contributor.author-fmusphcFERNANDO PEREIRA FRASSETTO
hcfmusp.contributor.author-fmusphcLEANDRO TAVARES LUCATO
hcfmusp.description.issue1
hcfmusp.description.volume13
hcfmusp.origemSCOPUS
hcfmusp.origem.dimensionspub.1157416727
hcfmusp.origem.scopus2-s2.0-85159225775
hcfmusp.relation.referenceLouis DN, Perry A, Reifenberger G, Et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathol, 131, pp. 803-820, (2016)eng
hcfmusp.relation.referenceLouis DN, Perry A, Wesseling P, Et al., The 2021 WHO Classification of Tumors of the Central Nervous System: a summary, Neuro Oncol, 23, pp. 1231-1251, (2021)eng
hcfmusp.relation.referenceLouis DN, Wesseling P, Paulus W, Et al., cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC), Acta Neuropathol, 135, pp. 481-484, (2018)eng
hcfmusp.relation.referenceLouis DN, Giannini C, Capper D, Et al., cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant, Acta Neuropathol, 135, pp. 639-642, (2018)eng
hcfmusp.relation.referenceBrat DJ, Aldape K, Colman H, Et al., cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV, Acta Neuropathol, 136, pp. 805-810, (2018)eng
hcfmusp.relation.referenceEllison DW, Hawkins C, Jones DTW, Et al., cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF V600E mutation, Acta Neuropathol, 137, pp. 683-687, (2019)eng
hcfmusp.relation.referenceBrat DJ, Aldape K, Colman H, Et al., cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas, Acta Neuropathol, 139, pp. 603-608, (2020)eng
hcfmusp.relation.referenceLouis DN, Wesseling P, Aldape K, Et al., cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading, Brain Pathol, 30, pp. 844-856, (2020)eng
hcfmusp.relation.referenceEllison DW, Aldape KD, Capper D, Et al., cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors, Brain Pathol, 30, pp. 863-866, (2020)eng
hcfmusp.relation.referenceGatto L, Franceschi E, Di Nunno V, Et al., Glioneuronal tumors: clinicopathological findings and treatment options, Future Neurology, 15, 3, (2020)eng
hcfmusp.relation.referenceKoeller KK, Henry JM., From the archives of the AFIP superficial gliomas: radiologic-pathologic correlation, Radiographics, 21, pp. 1533-1556, (2001)eng
hcfmusp.relation.referenceDudley RW, Torok MR, Gallegos DR, Et al., Pediatric low grade ganglioglioma/gangliocytoma: epidemiology, treatments, and outcome analysis on 348 children from the SEER database, Neurosurgery, 76, pp. 313-320, (2015)eng
hcfmusp.relation.referenceSakata K, Fujimori K, Komaki S, Et al., Pituitary gangliocytoma producing TSH and TRH: a review of “gangliocytomas of the sellar region, J Clin Endocrinol Metab, 105, pp. 3109-3121, (2020)eng
hcfmusp.relation.referenceAltman NR., MR and CT characteristics of gangliocytoma: a rare cause of epilepsy in children, AJNR Am J Neuroradiol, 9, pp. 917-921, (1988)eng
hcfmusp.relation.referenceLi Y, Guo J, Wei H, Et al., The surgical resection of dysplastic cerebellar gangliocytoma assisted by intraoperative sonography: illustrative case, J Neurosurg Case Lessons, 2, pp. 12-18, (2021)eng
hcfmusp.relation.referenceTan C, McLendon R., Histological approach to neuronal and mixed neuronal-glial tumors of the central nervous system, Glioma, 1, (2018)eng
hcfmusp.relation.referenceMa J, Jia G, Chen S, Et al., Clinical perspective on dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease), World Neurosurg, 122, pp. 16-23, (2019)eng
hcfmusp.relation.referenceSmith AB, Smirniotopoulos JG, Horkanyne-Szakaly I., From the radiologic pathology archives: Intraventricular neoplasms: radiologic-pathologic correlation, Radiographics, 33, pp. 21-43, (2013)eng
hcfmusp.relation.referenceLee SJ, Bui TT, Chen CHJ, Et al., Central neurocytoma: a review of clinical management and histopathologic features, Brain Tumor Res Treat, 4, pp. 49-57, (2016)eng
hcfmusp.relation.referenceDemir MK, Yapicier O, Yilmaz B, Et al., Magnetic resonance imaging findings of mixed neuronal-glial tumors with pathologic correlation: a review, Acta Neurol Belg, 118, pp. 379-386, (2018)eng
hcfmusp.relation.referenceYang GF, Wu SY, Zhang LJ, Et al., Imaging findings of extraventricular neurocytoma: report of 3 cases and review of the literature, AJNR Am J Neuroradiol, 30, pp. 581-585, (2009)eng
hcfmusp.relation.referenceWolf A, Alghefari H, Krivosheya D, Et al., Cerebellar liponeurocytoma: a rare intracranial tumor with possible familial predisposition—case report, J Neurosurg, 125, pp. 57-61, (2016)eng
hcfmusp.relation.referencePatel N, Fallah A, Provias J, Jha NK., Cerebellar liponeurocytoma, Can J Surg, 52, 4, pp. E117-E119, (2009)eng
hcfmusp.relation.referenceCai J, Li W, Du J, Et al., Supratentorial intracerebral cerebellar liponeurocytoma: a case report and literature review, Medicine (Baltimore), 97, (2018)eng
hcfmusp.relation.referenceElia G, Lorenzo U, Annarita G, Et al., Cerebellar liponeurocytoma presenting with fatal tumor hemorrhage, Neurosurgery Cases and Reviews, 210, (2019)eng
hcfmusp.relation.referenceCampos AR, Clusmann H, Von Lehe M, Et al., Simple and complex dysembryoplastic neuroepithelial tumors (DNT) variants: clinical profile, MRI, and histopathology, Neuroradiology, 51, pp. 433-443, (2009)eng
hcfmusp.relation.referenceRaz E, Kapilamoorthy TR, Gupta AK, Et al., Case 186: dysembrioplastic neuroepithelial tumor, Radiology, 265, pp. 317-320, (2012)eng
hcfmusp.relation.referenceOnishi S, Amatya VJ, Kolakshyapati M, Et al., T2-FLAIR mismatch sign in dysembryoplasticneuroepithelial tumor, Eur J Radiol, 126, (2020)eng
hcfmusp.relation.referenceSuh YL., Dysembryoplastic neuroepithelial tumors, J Pathol Transl Med, 49, pp. 438-449, (2015)eng
hcfmusp.relation.referenceDaumas-Duport C., Dysembryoplastic neuroepithelial tumours, Brain Pathol, 3, pp. 283-295, (1993)eng
hcfmusp.relation.referenceLucas CH, Gupta R, Doo P, Et al., Correction to: comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor, Acta Neuropathol Commun, 8, pp. 1-17, (2020)eng
hcfmusp.relation.referencePekmezci M, Villanueva-Meyer JE, Goode B, Et al., The genetic landscape of ganglioglioma, Acta Neuropathol Commun, 6, (2018)eng
hcfmusp.relation.referenceGessi M, Mu hlen A, Zur Hammes J, Et al., Genome-wide DNA copy number analysis of desmoplastic infantile astrocytomas and desmoplastic infantile gangliogliomas, J Neuropathol Exp Neurol, 72, pp. 807-815, (2013)eng
hcfmusp.relation.referenceTrehan G, Bruge H, Vinchon M, Et al., MR imaging in the diagnosis of desmoplastic infantile tumor: retrospective study of six cases, AJNR Am J Neuroradiol, 25, pp. 1028-1033, (2004)eng
hcfmusp.relation.referenceBader A, Heran M, Dunham C, Et al., Radiological features of infantile glioblastoma and desmoplastic infantile tumors: British Columbia’s Children’s Hospital experience, J Neurosurg Pediatr, 16, pp. 119-125, (2015)eng
hcfmusp.relation.referenceWang AC, Jones DTW, Abecassis IJ, Et al., Desmoplastic infantile ganglioglioma/astrocytoma (DIG/DIA) are distinct entities with frequent BRAFV600 mutations, Mol Cancer Res, 16, pp. 1491-1498, (2018)eng
hcfmusp.relation.referenceBlessing MM, Blackburn PR, Balcom JR, Et al., Novel BRAF alteration in desmoplastic infantile ganglioglioma with response to targeted therapy, Acta Neuropathol Commun, 6, (2018)eng
hcfmusp.relation.referenceDougherty MJ, Santi M, Brose MS, Et al., Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas, Neuro Oncol, 12, pp. 621-630, (2010)eng
hcfmusp.relation.referencePrabowo AS, Iyer AM, Veersema TJ, Et al., BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors, Brain Pathol, 24, pp. 52-66, (2014)eng
hcfmusp.relation.referenceMyung JK, Byeon SJ, Kim B, Et al., Papillary glioneuronal tumors: a review of clinicopathologic and molecular genetic studies, Am J Surg Pathol, 35, pp. 1794-1805, (2011)eng
hcfmusp.relation.referenceYadav N, Rao S, Saini J, Et al., Papillary glioneuronal tumors: a radiopathologic correlation, Eur J Radiol, 97, pp. 44-52, (2017)eng
hcfmusp.relation.referenceWilson CP, Chakraborty AR, Pelargos PE, Et al., Rosette-forming glioneuronal tumor: an illustrative case and a systematic review, Neurooncology Adv, 2, (2020)eng
hcfmusp.relation.referenceShah MN, Leonard JR, Perry A., Rosette-forming glioneuronal tumors of the posterior fossa: report of 6 cases, J Neurosurg Pediatr, 5, pp. 98-103, (2010)eng
hcfmusp.relation.referencePekmezci M, Stevers M, Phillips JJ, Et al., Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway, Acta Neuropathol, 135, pp. 485-488, (2018)eng
hcfmusp.relation.referenceNunes RH, Hsu CC, Da Rocha AJ, Et al., Multinodular and vacuolating neuronal tumor of the cerebrum: a new “leave me alone” lesion with a characteristic imaging pattern, AJNR Am J Neuroradiol, 38, pp. 1899-1904, (2017)eng
hcfmusp.relation.referenceHuse JT, Edgar M, Halliday J, Et al., Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion, Brain Pathol, 23, pp. 515-524, (2013)eng
hcfmusp.relation.referenceLecler A, Bailleux J, Carsin B, Et al., Multinodular and vacuolating posterior fossa lesions of unknown significance, AJNR Am J Neuroradiol, 40, pp. 1689-1694, (2019)eng
hcfmusp.relation.referenceBodi I, Curran O, Selway R, Et al., Two cases of multinodular and vacuolating neuronal tumour, Acta Neuropathol Commun, 2, pp. 1-10, (2014)eng
hcfmusp.relation.referenceLakhani DA, Mankad K, Chhabda S, Et al., Diffuse leptomeningeal glioneuronal tumor of childhood, AJNR Am J Neuroradiol, 41, pp. 2155-2159, (2020)eng
hcfmusp.relation.referenceDeng MY, Sill M, Chiang J, Et al., Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features, Acta Neuropathol, 136, pp. 239-253, (2018)eng
hcfmusp.relation.referenceDeng MY, Sill M, Sturm D, Et al., Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters (DGONC): a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14, Neuropathol Appl Neurobiol, 46, pp. 422-430, (2020)eng
hcfmusp.relation.referencePickles JC, Mankad K, Aizpurua M, Et al., A case series of diffuse glioneuronal tumours with oligodendroglioma-like features and nuclear clusters (DGONC), Neuropathol Appl Neurobiol, 47, pp. 464-467, (2021)eng
hcfmusp.relation.referenceSolomon DA, Korshunov A, Sill M, Et al., Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile, Acta Neuropathol, 136, pp. 339-343, (2018)eng
hcfmusp.relation.referenceNarvaez E de O, Inada BS, de Almeida PR, Et al., Myxoid glioneuronal tumour: report of three cases of a new tumour in a typical location and review of literature, BJR Case Rep, 7, (2021)eng
hcfmusp.relation.referenceLucas CH, Villanueva-Meyer JE, Whipple N, Et al., Myxoid glioneuronal tumor, PDGFRA p.K385-mutant: clinical, radiologic, and histopathologic features, Brain Pathol, 30, pp. 479-494, (2020)eng
hcfmusp.relation.referenceBroen MP, Smits M, Wijnenga MM, Et al., The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study, Neuro Oncol, 20, pp. 1393-1399, (2018)eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationcd71fe82-a105-47a6-ad1c-c8ed9cfa1b76
relation.isAuthorOfPublication83727810-9852-4469-94ae-f59eb3fa3389
relation.isAuthorOfPublication56f088dd-0cca-4aed-9cc1-40e828007c20
relation.isAuthorOfPublicationd49e7b4e-67b6-4d1b-8495-42f559c1da47
relation.isAuthorOfPublicationa31cf04a-45af-41bd-85a6-cd834dd95b16
relation.isAuthorOfPublicationa1b272a4-39a6-48c9-80c4-9943645e593a
relation.isAuthorOfPublication502c63a3-51af-4c49-81a9-69b842cbb90a
relation.isAuthorOfPublicationafb88135-e268-4c50-9ae2-1b029ed3b934
relation.isAuthorOfPublication2ac88ce1-d21c-41f5-ad40-0b49d9b7cad3
relation.isAuthorOfPublication42377b44-4755-45df-baa0-9d7f45a142e3
relation.isAuthorOfPublication.latestForDiscoverycd71fe82-a105-47a6-ad1c-c8ed9cfa1b76
Arquivos