Pre-treatment MRI tumor features and post-treatment mammographic findings: may they contribute to refining the prediction of pathologic complete response in post-neoadjuvant breast cancer patients with radiologic complete response on MRI?

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
CHALA, Luciano F.
MANO, Max S.
GEYER, Felipe C.
TORRES, Ulysses S.
MELLO, Giselle Guedes Netto de
Citação
EUROPEAN RADIOLOGY, v.32, n.3, p.1663-1675, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose Radiologic complete response (rCR) in breast cancer patients after neoadjuvant chemotherapy (NAC) does not necessarily correlate with pathologic complete response (pCR), a marker traditionally associated with better outcomes. We sought to verify if data extracted from two important steps of the imaging workup (tumor features at pre-treatment MRI and post-treatment mammographic findings) might assist in refining the prediction of pCR in post-NAC patients showing rCR. Methods A total of 115 post-NAC women with rCR on MRI (2010-2016) were retrospectively assessed. Pre-treatment MRI (lesion morphology, size, and distribution) and post-treatment mammographic findings (calcification, asymmetry, mass, architectural distortion) were assessed, as well as clinical and molecular variables. Bivariate and multivariate analyses evaluated correlation between such variables and pCR. Post-NAC mammographic findings and their correlation with ductal in situ carcinoma (DCIS) were evaluated using Pearson's correlation. Results Tumor distribution at pre-treatment MRI was the only significant predictive imaging feature on multivariate analysis, with multicentric lesions having lower odds of pCR (p = 0.035). There was no significant association between tumor size and morphology with pCR. Mammographic residual calcifications were associated with DCIS (p = 0.009). The receptor subtype remained as a significant predictor, with HR-HER2 + and triple-negative status demonstrating higher odds of pCR on multivariate analyses. Conclusions Multicentric lesions on pre-NAC MRI were associated with a lower chance of pCR in post-NAC rCR patients. The receptor subtype remained a reliable predictor of pCR. Residual mammographic calcifications correlated with higher odds of malignancy, making the correlation between mammography and MRI essential for surgical planning.
Palavras-chave
Breast cancer, Magnetic resonance imaging, Mammography, Pathologic complete response, Radiologic complete response
Referências
  1. Alberro JA, 2018, LANCET ONCOL, V19, P27, DOI 10.1016/S1470-2045(17)30777-5
  2. B.I.R.A.D.S. American College of Radiology (ACR), ACR BREAST IM REP DA
  3. Chen JH, 2011, RADIOLOGY, V261, P735, DOI 10.1148/radiol.11110814
  4. Chen XS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108405
  5. Choi WJ, 2019, EUR J RADIOL, V118, P114, DOI 10.1016/j.ejrad.2019.06.017
  6. Cortazar P, 2014, LANCET, V384, P164, DOI 10.1016/S0140-6736(13)62422-8
  7. De los Santos JF, 2013, CANCER-AM CANCER SOC, V119, P1776, DOI 10.1002/cncr.27995
  8. Dialani V, 2015, ANN SURG ONCOL, V22, P1416, DOI 10.1245/s10434-015-4403-9
  9. Feliciano Y, 2017, ANN SURG ONCOL, V24, P1492, DOI 10.1245/s10434-016-5741-y
  10. Gampenrieder SP, 2019, BREAST CANCER RES, V21, DOI 10.1186/s13058-018-1091-y
  11. Henderson SA, 2018, BRIT J RADIOL, V91, DOI 10.1259/bjr.20180123
  12. Hosmer DW, 2013, WILEY SER PROBAB ST, P153
  13. Hylton NM, 2018, RADIOLOGY, V289, P335, DOI 10.1148/radiol.2018181846
  14. Hylton NM, 2016, RADIOLOGY, V279, P44, DOI 10.1148/radiol.2015150013
  15. Jeevan R, 2012, BMJ, V345, pe4505, DOI 10.1136/bmj.e4505
  16. Kim YS, 2016, ANN SURG ONCOL, V23, P1135, DOI 10.1245/s10434-015-4993-2
  17. Kirkwood BR., ESSENTIAL MED STAT, V2nd
  18. Kulcsar MAV, MANUAL CONDUTAS ONCO
  19. Lobbes MBI, 2013, INSIGHTS IMAGING, V4, P163, DOI 10.1007/s13244-013-0219-y
  20. Marinovich ML, 2015, BMC CANCER, V15, DOI 10.1186/s12885-015-1664-4
  21. Marinovich ML, 2013, JNCI-J NATL CANCER I, V105, P321, DOI 10.1093/jnci/djs528
  22. Mazari FAK, 2018, RADIOLOGY, V288, P366, DOI 10.1148/radiol.2018170960
  23. McGuire KP, 2011, ANN SURG ONCOL, V18, P3149, DOI 10.1245/s10434-011-1912-z
  24. Mukhtar RA, 2013, ANN SURG ONCOL, V20, P3823, DOI 10.1245/s10434-013-3038-y
  25. National Comprehensive Cancer Network, 2016, BREAST CANCER-TOKYO
  26. Partridge SC, 2002, AM J ROENTGENOL, V179, P1193, DOI 10.2214/ajr.179.5.1791193
  27. Peintinger F, 2015, MODERN PATHOL, V28, P913, DOI 10.1038/modpathol.2015.53
  28. Schaefgen B, 2016, ANN SURG ONCOL, V23, P789, DOI 10.1245/s10434-015-4918-0
  29. Schneeweiss A, 2013, ANN ONCOL, V24, P2278, DOI 10.1093/annonc/mdt182
  30. Sener SF, 2019, J SURG ONCOL, V120, P903, DOI 10.1002/jso.25663
  31. Testa PMG, 2019, MANUAL CONDUTAS ONCO
  32. van Ramshorst MS, 2017, BREAST CANCER RES TR, V164, P99, DOI 10.1007/s10549-017-4254-0
  33. von Minckwitz G, 2012, J CLIN ONCOL, V30, P1796, DOI 10.1200/JCO.2011.38.8595
  34. Weiss A, 2014, ANN SURG ONCOL, V21, P3310, DOI 10.1245/s10434-014-3914-0
  35. Woo J, 2021, EJSO-EUR J SURG ONC, V47, P232, DOI 10.1016/j.ejso.2020.08.023
  36. Yee D, 2020, JAMA ONCOL, V6, P1355, DOI 10.1001/jamaoncol.2020.2535
  37. Yim H, 2019, ACTA RADIOL, V60, P131, DOI 10.1177/0284185118776491
  38. Zhang K, 2020, CANCER MANAG RES, V12, P2603, DOI 10.2147/CMAR.S247279
  39. Zhang XF, 2020, QUANT IMAG MED SURG, V10, P197, DOI 10.21037/qims.2019.11.16