Study of CNN Capacity Applied to Left Ventricle Segmentation in Cardiac MRI

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
SN COMPUTER SCIENCE, v.2, n.6, article ID 480, p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
CNN (Convolutional Neural Network) models have been successfully used for segmentation of the left ventricle (LV) in cardiac MRI (Magnetic Resonance Imaging), providing clinical measurements. In practice, two questions arise with deployment of CNNs: (1) when is it better to use a shallow model instead of a deeper one? (2) how the size of a dataset might change the network performance? We propose a framework to answer them, by experimenting with deep and shallow versions of three U-Net families, trained from scratch in six subsets varying from 100 to 10,000 images, different network sizes, learning rates and regularization values. 1620 models were evaluated using five-fold cross-validation by loss and DICE. The results indicate that: sample size affects performance more than architecture or hyper-parameters; in small samples the performance is more sensitive to hyper-parameters than architecture; the performance difference between shallow and deeper networks is not the same across families. © 2021, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
Palavras-chave
Cardiac, Deep learning, Magnetic resonance imaging, Model selection, Segmentation
Referências
  1. Akaike, H., A new look at the statistical model identification (1974) IEEE Trans Autom Control, 19 (6), pp. 716-723
  2. Aziz, Y.F.A., Fadzli, F., Rizal Azman, R., Mohamed Sani, F., Vijayananthan, A., Nazri, M., State of the heart: Cmr in coronary artery disease (2013) Curr Med Imaging, 9 (3), pp. 201-213
  3. Bartlett, P.L., Foster, D.J., Telgarsky, M., Spectrally-normalized margin bounds for neural networks (2017) Adv Neur Inf Proc Sys., 30, pp. 6241-6250
  4. Benkendorf, D.J., Hawkins, C.P., Effects of sample size and network depth on a deep learning approach to species distribution modeling (2020) Ecol Inf, 60, p. 101137
  5. Chaurasia, A., Culurciello, E., (2017) Linknet: Exploiting Encoder Representations for Efficient Semantic Segmentation, pp. 1-4. , https://doi.org/10.1109/VCIP.2017.8305148
  6. Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., Rueckert, D., Deep learning for cardiac image segmentation: a review (2020) Front Cardiovasc Med, 7, p. 25
  7. Dice, L.R., Measures of the amount of ecologic association between species (1945) Ecology, 26 (3), pp. 297-302
  8. Ghavami, N., Hu, Y., Gibson, E., Bonmati, E., Emberton, M., Moore, C.M., Barratt, D.C., Automatic segmentation of prostate mri using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and mri-ultrasound registration (2019) Med Image Anal, 58, p. 101558
  9. Hastie, T.J., Tibshirani, R.J., (1990) Generalized additive models, 43. , Chapman & Hall/CRC, Boca Raton
  10. He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition (2016) Proc. IEEE CVPR, pp. 770-778
  11. Hu, J., Shen, L., Sun, G., Squeeze-and-excitation networks (2018) Proc. IEEE CVPR, pp. 7132-7141
  12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., Feature pyramid networks for object detection (2017) Proc. IEEE CVPR, pp. 2117-2125
  13. Martin, C.H., Mahoney, M.W., (2018) Rethinking Generalization Requires Revisiting Old Ideas: Statistical Mechanics Approaches and Complex Learning Behavior. Arxiv Preprint Arxiv, 1710, p. 09553
  14. Neyshabur, B., Li, Z., Bhojanapalli, S., Lecun, Y., Srebro, N., The role of over-parametrization in generalization of neural networks (2019) : Proc. ICLR., pp. 1-20
  15. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Kainz, B., Attention u-net: Learning where to look for the pancreas (2018) Proc. Conf. MIDL–medical Imaging with Deep Learning, pp. 1-10
  16. Ronneberger, O., Fischer, P., Brox, T., U-net: convolutional networks for biomedical image segmentation (2015) In: MICCAI. LNCS, 9351, pp. 234-241
  17. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L., Mobilenetv2: Inverted residuals and linear bottlenecks (2018) Proc. IEEE CVPR, pp. 4510-4520. , https://doi.org/10.1109/CVPR.2018.00474
  18. Shahinfar, S., Meek, P., Falzon, G., how many images do i need? understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring (2020) Ecol Inf, 57, p. 101085
  19. Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition (2015) In: Proc. ICLR., pp. 1-14
  20. Spencer, J.H., Quill, J.L., Bateman, M.G., Eggen, M.D., Howard, S.A., Goff, R.P., Howard, B.T., Iaizzo, P.A., The benefits of the atlas of human cardiac anatomy website for the design of cardiac devices (2013) Expert Rev Med Devices, 10 (6), pp. 729-734
  21. Suinesiaputra, A., Cowan, B.R., Al-Agamy, A.O., Elattar, M.A., Ayache, N., Fahmy, A.S., Khalifa, A.M., Kadish, A.H., A collaborative resource to build consensus for automated left ventricular segmentation of cardiac mr images (2014) Med Image Anal, 18 (1), pp. 50-62
  22. Tabachnick, B.G., Fidell, L.S., (2007) Experimental Design Using ANOVA, , Duxbury, Belmont
  23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V., Mnasnet: Platform-aware neural architecture search for mobile (2019) Proc. IEEE/CVF CVPR, pp. 2820-2828
  24. Tan, M., Le, Q., Efficientnet: Rethinking model scaling for convolutional neural networks (2019) Proc. ICML, PMLR, pp. 6105-6114
  25. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., Pyramid scene parsing network (2017) Proc. IEEE CVPR, pp. 2881-2890
  26. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J., Unet++: a nested u-net architecture for medical image segmentation (2018) Deep learning in medical image analysis and multimodal learning for clinical decision support, pp. 3-11. , Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, (eds), Springer