Toxicological insights of Spike fragments SARS-CoV-2 by exposure environment: A threat to aquatic health?

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
CHARLIE-SILVA, Ives
ARAUJO, Amanda P. C.
GUIMARAES, Abraao T. B.
VERAS, Flavio P.
BRAZ, Helyson L. B.
PONTES, Leticia G. de
JORGE, Roberta J. B.
BELO, Marco A. A.
NOBREGA, Rafael H.
Citação
JOURNAL OF HAZARDOUS MATERIALS, v.419, article ID 126463, 11p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 Spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles/5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulated with these peptides during 24 h of exposure in two concentrations (100 and 500 ng/mL). The control group (""C"") was composed of tadpoles kept in polyethylene containers containing dechlorinated water. Oxidative stress, antioxidant biomarkers and AChE activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has cholinesterasic effect in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential.
Palavras-chave
Oxidative stress, Coronavirus, Amphibians, Acetylcholinesterase, SARS-Cov-2
Referências
  1. Abouhashem AS, 2020, ANTIOXID REDOX SIGN, V33, P59, DOI 10.1089/ars.2020.8111
  2. Abu-Qdais HA, 2020, GLOB J ENVIRON SCI M, V6, P21, DOI 10.22034/GJESM.2019.06.SI.03
  3. Abu-Rayash A, 2020, ENERGY RES SOC SCI, V68, DOI 10.1016/j.erss.2020.101682
  4. Akerstrom S, 2005, J VIROL, V79, P1966, DOI 10.1128/JVI.79.3.1966-1969.2005
  5. Albecker MA, 2017, FRONT ZOOL, V14, DOI 10.1186/s12983-017-0222-0
  6. Alvarez RA, 2020, AM J RESP CRIT CARE, V202, P16, DOI 10.1164/rccm.202005-1906ED
  7. Bali YA, 2019, TOXICOLOGY, V415, P18, DOI 10.1016/j.tox.2019.01.010
  8. Bangaru S, 2020, SCIENCE, V370, P1089, DOI 10.1126/science.abe1502
  9. Baradaran A, 2020, ARCH BONE JT SURG-AB, V8, P247, DOI 10.22038/abjs.2020.47754.2346
  10. Guimaraes ATB, 2021, SCI TOTAL ENVIRON, V752, DOI 10.1016/j.scitotenv.2020.141936
  11. Bayindir M, 2020, SYNERGIC VIRAL BACTE
  12. Pais FSM, 2014, ALGORITHM MOL BIOL, V9, DOI 10.1186/1748-7188-9-4
  13. Pala A, 2019, ENVIRON SCI POLLUT R, V26, P36869, DOI 10.1007/s11356-019-06804-5
  14. Pandey D, 2021, INT J HYG ENVIR HEAL, V231, DOI 10.1016/j.ijheh.2020.113634
  15. PECHMANN JHK, 1991, SCIENCE, V253, P892, DOI 10.1126/science.253.5022.892
  16. Pettersen EF, 2021, PROTEIN SCI, V30, P70, DOI 10.1002/pro.3943
  17. Polo D, 2020, WATER RES, V186, DOI 10.1016/j.watres.2020.116404
  18. Polonikov A, 2020, ACS INFECT DIS, V6, P1558, DOI 10.1021/acsinfecdis.0c00288
  19. Pomara N, 2020, MED HYPOTHESES, V144, DOI 10.1016/j.mehy.2020.110274
  20. Pothiwong Wirnon, 2007, Journal of Pharmacological and Toxicological Methods, V56, P336, DOI 10.1016/j.vascn.2007.08.004
  21. Pupin NC, 2010, HERPETOL J, V20, P147
  22. Ravichandran S, 2020, SCI TRANSL MED, V12, DOI 10.1126/scitranslmed.abc3539
  23. Qi XX, 2020, CHEM COMMUN, V56, P8683, DOI 10.1039/d0cc03263h
  24. Raibaut L, 2015, TOP CURR CHEM, V363, P103, DOI 10.1007/128_2014_609
  25. Ranvestel AW, 2004, FRESHWATER BIOL, V49, P274, DOI 10.1111/j.1365-2427.2004.01184.x
  26. Rutkoski CF, 2021, ENVIRON SCI POLLUT R, V28, P4377, DOI 10.1007/s11356-020-10798-w
  27. Samrat SK, 2020, VIRUS RES, V288, DOI 10.1016/j.virusres.2020.198141
  28. Sangkham S., 2020, CASE STUD CHEM ENV E, V2, P100052, DOI 10.1016/j.cscee.2020.100052
  29. Santiago I, 2021, ENERG POLICY, V148, DOI 10.1016/j.enpol.2020.111964
  30. Sharma HB, 2020, RESOUR CONSERV RECY, V162, DOI 10.1016/j.resconrec.2020.105052
  31. Shutler J., 2020, RISK SARS COV 2 INFE, DOI 10.1101/ 2020.06.17.20133504.
  32. Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035
  33. SINHA AK, 1972, ANAL BIOCHEM, V47, P389, DOI 10.1016/0003-2697(72)90132-7
  34. Soneja A, 2005, PHARMACOL REP, V57, P108
  35. Tougu V., 2001, Current Medicinal Chemistry - Central Nervous System Agents, V1, P155, DOI 10.2174/1568015013358536
  36. Suhail S, 2020, PROTEIN J, V39, P644, DOI 10.1007/s10930-020-09935-8
  37. Sumner A., 2020, 202043 UNUWIDER, DOI 10.35188/UNU-WIDER/2020/834-4
  38. The Lancet Respiratory Medicine, 2020, Lancet Respir Med, V8, P1159, DOI 10.1016/S2213-2600(20)30514-2
  39. Tracey KJ, 2007, J CLIN INVEST, V117, P289, DOI 10.1172/JCI30555
  40. Truhlar DG, 2007, J COMPUT CHEM, V28, P73, DOI 10.1002/jcc.20529
  41. Urban RC, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142471
  42. Valavanidis A, 2006, ECOTOX ENVIRON SAFE, V64, P178, DOI 10.1016/j.ecoenv.2005.03.013
  43. World Health Organization, WHO COR COV 19 DASHB
  44. Wrubleswski J, 2018, ECOTOXICOLOGY, V27, P360, DOI 10.1007/s10646-018-1900-1
  45. Wu Fuqing, 2020, mSystems, V5, DOI 10.1128/mSystems.00614-20
  46. Wusu D., 2016, INT J BIO RES, V4, P157, DOI 10.14419/IJBR.V4I2.6459
  47. Xiao F, 2020, EMERG INFECT DIS, V26, P1920, DOI 10.3201/eid2608.200681
  48. Behrendt R, 2016, J PEPT SCI, V22, P4, DOI 10.1002/psc.2836
  49. Yang JY, 2020, NATURE, V586, P572, DOI 10.1038/s41586-020-2599-8
  50. Zand AD, 2020, RESOUR CONSERV RECY, V162, DOI 10.1016/j.resconrec.2020.105051
  51. Zhao XS, 2013, AQUAT TOXICOL, V136, P49, DOI 10.1016/j.aquatox.2013.03.019
  52. Bivins A, 2020, ENVIRON SCI TECH LET, V7, P937, DOI 10.1021/acs.estlett.0c00730
  53. Blaustein AR, 2002, ECOL LETT, V5, P597, DOI 10.1046/j.1461-0248.2002.00352.x
  54. Bonaz Bruno, 2020, Bioelectron Med, V6, P15, DOI 10.1186/s42234-020-00051-7
  55. Carvalho M, 2021, INT J ENERG RES, V45, P3358, DOI 10.1002/er.5877
  56. Chakraborty I, 2020, SCI TOTAL ENVIRON, V728, DOI 10.1016/j.scitotenv.2020.138882
  57. Chen LN, 2004, CLIN INFECT DIS, V39, P1531, DOI 10.1086/425357
  58. CHEN Y, 2020, J ATHEROSCLER THROMB, V27, P922
  59. Costela-Ruiz VJ, 2020, CYTOKINE GROWTH F R, V54, P62, DOI 10.1016/j.cytogfr.2020.06.001
  60. Coughlan L, 2020, CELL HOST MICROBE, V28, P360, DOI 10.1016/j.chom.2020.08.007
  61. Araujo APD, 2020, J HAZARD MATER, V386, DOI 10.1016/j.jhazmat.2019.121992
  62. Araujo APD, 2020, J HAZARD MATER, V382, DOI 10.1016/j.jhazmat.2019.121066
  63. De Leon JAD, 2020, JOVE-J VIS EXP, DOI 10.3791/61122
  64. Miranda NED, 2019, MOL PHYLOGENET EVOL, V132, P67, DOI 10.1016/j.ympev.2018.11.003
  65. Dieterich S, 2000, CIRCULATION, V101, P33, DOI 10.1161/01.CIR.101.1.33
  66. Elsamadony M, 2021, SCI TOTAL ENVIRON, V755, DOI 10.1016/j.scitotenv.2020.142575
  67. Estrela FN, 2021, J HAZARD MATER, V403, DOI 10.1016/j.jhazmat.2020.123879
  68. Ezeoyili IC, 2019, J AQUAT ANIM HEALTH, V31, P371, DOI 10.1002/aah.10089
  69. Feitosa, 2020, ZEBRAFISH STUDIES VA, DOI 10.20.346262
  70. Fraternale A, 2006, CURR MED CHEM, V13, P1749, DOI 10.2174/092986706777452542
  71. Frost D., 2017, AMPHIBIAN SPECIES WO
  72. Galindo-Villegas J, 2020, FRONT PHARMACOL, V11, DOI 10.3389/fphar.2020.00680
  73. Gaudin R, 2021, TRENDS CELL BIOL, V31, P17, DOI 10.1016/j.tcb.2020.09.005
  74. GORNALL AG, 1949, J BIOL CHEM, V177, P751
  75. Graham KE, 2021, ENVIRON SCI TECHNOL, V55, P488, DOI 10.1021/acs.est.0c06191
  76. GRANT EHC, 2020, HERPETOLOGICA
  77. GRISHAM MB, 1999, AM J PHYSIOL-GASTR L, V276, pG315
  78. Guerrero-Latorre L, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140832
  79. Guy CA, 1997, METHOD ENZYMOL, V289, P67
  80. Tran HN, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110265
  81. Harrison AG, 2020, TRENDS IMMUNOL, V41, P1100, DOI 10.1016/j.it.2020.10.004
  82. HENRY RJ, 1957, ANAL CHEM, V29, P1491, DOI 10.1021/ac60130a028
  83. Herek JS, 2020, ENVIRON SCI POLLUT R, V27, P22619, DOI 10.1007/s11356-020-08869-z
  84. Higgins DG, 1996, METHOD ENZYMOL, V266, P383
  85. Hu P, 2012, BIOCONJUGATE CHEM, V23, P438, DOI 10.1021/bc200449k
  86. Huang Y, 2020, ACTA PHARMACOL SIN, V41, P1141, DOI 10.1038/s41401-020-0485-4
  87. IBRAHIM KAE, 2020, ENVIRONMENTALSCIENCE, P1
  88. Ighodaro OM, 2018, ALEX J MED, V54, P287, DOI 10.1016/j.ajme.2017.09.001
  89. Jetz W, 2018, NAT ECOL EVOL, V2, P850, DOI 10.1038/s41559-018-0515-5
  90. Jing MY, 2020, SCI TOTAL ENVIRON, V736, DOI 10.1016/j.scitotenv.2020.139567
  91. Jones DL, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.141364
  92. Jung K, 2010, VET IMMUNOL IMMUNOP, V136, P335, DOI 10.1016/j.vetimm.2010.03.022
  93. Kampf G, 2020, J HOSP INFECT, V104, P246, DOI 10.1016/j.jhin.2020.01.022
  94. Karki Rajendra, 2020, bioRxiv, DOI [10.1016/j.cell.2020.11.025, 10.1101/2020.10.29.361048]
  95. Keech C, 2020, NEW ENGL J MED, V383, P2320, DOI 10.1056/NEJMoa2026920
  96. Keyaerts E, 2004, INT J INFECT DIS, V8, P223, DOI 10.1016/j.ijid.2004.04.012
  97. Khan FR, 2015, ENVIRON POLLUT, V206, P73, DOI 10.1016/j.envpol.2015.06.009
  98. Klaassen N, 2019, J CHROMATOGR A, V1588, P163, DOI 10.1016/j.chroma.2018.12.057
  99. Kolb P, 2009, CURR OPIN BIOTECH, V20, P429, DOI 10.1016/j.copbio.2009.08.003
  100. Li Y.C, 2020, HELL J CARDIOL
  101. Liu DS, 2020, SCI TOTAL ENVIRON, V749, DOI 10.1016/j.scitotenv.2020.142358
  102. Liu H, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/9718615
  103. Luna OF, 2016, MOLECULES, V21, DOI 10.3390/molecules21111542
  104. Lusher AL, 2013, MAR POLLUT BULL, V67, P94, DOI 10.1016/j.marpolbul.2012.11.028
  105. Maharajan K, 2018, AQUAT TOXICOL, V196, P132, DOI 10.1016/j.aquatox.2018.01.010
  106. Marron T., 2020, ANINFLAMMATORYCYTOKI
  107. Mazloom R, 2020, J NEUROIMMUNE PHARM, V15, P165, DOI 10.1007/s11481-020-09919-6
  108. METZGER JW, 1994, ANAL BIOCHEM, V219, P261, DOI 10.1006/abio.1994.1266
  109. Meyerowitz EA, 2021, ANN INTERN MED, V174, P69, DOI 10.7326/M20-5008
  110. MILATOVIC D, 2006, SCI WORLD J, V6
  111. Morris GM, 2009, J COMPUT CHEM, V30, P2785, DOI 10.1002/jcc.21256
  112. Nishikawa M, 2009, ADV DRUG DELIVER REV, V61, P319, DOI 10.1016/j.addr.2009.01.001
  113. Osman A.H., 2020, INT J CLIN VIROL, V4, DOI [10.29328/journal.ijcv.1001014, DOI 10.29328/JOURNAL.IJCV.1001014]