Outcomes of acute basilar artery occlusion-real-world experience in a middle-income country

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Citação
ACTA NEUROLOGICA SCANDINAVICA, v.145, n.4, p.456-463, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives Our goal was to describe outcomes in a single-center, real-world series of patients with acute basilar artery occlusion in a middle-income country. In addition, we assessed potential outcome predictors. Material and Methods Data from 28 patients were retrospectively reviewed. The primary outcome was death until last follow-up. Other outcomes were rates of favorable outcome until last follow-up and rates of intracranial hemorrhage. Outcomes were compared in subgroups according to several variables, including reperfusion (REP group) or no reperfusion (NOREP group) interventions, with chi-squared, Fisher's exact test, or Mann-Whitney tests. Results The rate of overall intrahospital death was 46%. Death until last follow-up occurred in 8/17 (47%) in the REP and in 7/11 (63%) of the NOREP group. Favorable outcomes were observed in 35.7% of the patients: 8/17 (47%) in REP and in 2/11 (18.1%) in NOREP. NIH stroke scale scores were significantly lower in patients with favorable outcomes. Intracranial hemorrhage was observed in 6/28 (21.4%) of the patients (all in REP group). Twenty patients were treated with anticoagulants within the first 24 h. No hemorrhage was observed in those treated with enoxaparin, while three occurred in subjects treated with unfractionated heparin. Conclusion Together with other series, our results underscore the relevance of NIH stroke scale at admission as a prognostic marker, the importance of reperfusion to improve outcomes, and the need of clinical trials to compare the impact of treatment with anticoagulants within first 24 h in basilar artery occlusion.
Palavras-chave
basilar artery occlusion, large vessel occlusion, posterior circulation, stroke
Referências
  1. ADAMS HP, 1993, STROKE, V24, P35, DOI 10.1161/01.STR.24.1.35
  2. Albers GW, 2018, NEW ENGL J MED, V378, P708, DOI 10.1056/NEJMoa1713973
  3. Alemseged F, 2019, STROKE, V50, P1415, DOI 10.1161/STROKEAHA.118.023361
  4. Alemseged F, 2017, STROKE, V48, P631, DOI 10.1161/STROKEAHA.116.015492
  5. Baik SH, 2019, RADIOLOGY, V291, P730, DOI 10.1148/radiol.2019181924
  6. Buchman SL, 2019, CURR TREAT OPTION NE, V21, DOI 10.1007/s11940-019-0591-0
  7. Burns JD, 2016, NEUROCRIT CARE, V24, P172, DOI 10.1007/s12028-015-0211-0
  8. Cross DT, 1997, AM J NEURORADIOL, V18, P1221
  9. Deguchi I, 2020, CLIN NEUROL NEUROSUR, V194, DOI 10.1016/j.clineuro.2020.105796
  10. Dias FA, 2019, CEREBROVASC DIS, V47, P285, DOI 10.1159/000502083
  11. Dias FA, 2017, J STROKE CEREBROVASC, V26, P2191, DOI 10.1016/j.jstrokecerebrovasdis.2017.04.043
  12. Dornak T, 2019, FRONT NEUROL, V10, DOI 10.3389/fneur.2019.00417
  13. Gory B, 2018, CEREBROVASC DIS, V45, P61, DOI 10.1159/000486690
  14. Guillaume M, 2019, J AM HEART ASSOC, V8, DOI 10.1161/JAHA.118.010962
  15. Hacke W, 1998, LANCET, V352, P1245, DOI 10.1016/S0140-6736(98)08020-9
  16. Haussen DC, 2016, INTERV NEUROL, V5, P179, DOI 10.1159/000447756
  17. Janssen H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193051
  18. Kaneko J, 2019, J NEUROL SCI, V401, P29, DOI 10.1016/j.jns.2019.04.010
  19. Kim JG, 2019, INTERV NEURORADIOL, V25, P371, DOI 10.1177/1591019919827505
  20. Kumar G, 2015, J NEUROINTERV SURG, V7, P868, DOI 10.1136/neurintsurg-2014-011418
  21. Langezaal LCM, 2021, NEW ENGL J MED, V384, P1910, DOI 10.1056/NEJMoa2030297
  22. Lindsberg PJ, 2015, NEUROLOGY, V85, P1806, DOI 10.1212/WNL.0000000000002129
  23. Liu XF, 2020, LANCET NEUROL, V19, P115, DOI 10.1016/S1474-4422(19)30395-3
  24. Mahajan A, 2020, CLIN CASE REP, V8, P2574, DOI 10.1002/ccr3.3225
  25. Meinel TR, 2019, J NEUROINTERV SURG, V11, P1174, DOI 10.1136/neurintsurg-2018-014516
  26. Nagel S, 2012, INT J STROKE, V7, P282, DOI 10.1111/j.1747-4949.2011.00705.x
  27. Nogueira RG, 2018, NEW ENGL J MED, V378, P11, DOI 10.1056/NEJMoa1706442
  28. Plamoottil CI., 2020, CUREUS, V12, P10
  29. Puetz V, 2008, STROKE, V39, P2485, DOI 10.1161/STROKEAHA.107.511162
  30. Puetz V, 2011, STROKE, V42, P3454, DOI 10.1161/STROKEAHA.111.622175
  31. Ritvonen J, 2019, EUR J NEUROL, V26, P128, DOI 10.1111/ene.13781
  32. Ritvonen J, 2021, EUR J NEUROL, V28, P816, DOI 10.1111/ene.14628
  33. Schonewille WJ, 2009, LANCET NEUROL, V8, P724, DOI 10.1016/S1474-4422(09)70173-5
  34. Strbian D, 2013, ANN NEUROL, V73, P688, DOI 10.1002/ana.23904
  35. Tomycz ND, 2008, J NEUROIMAGING, V18, P15, DOI 10.1111/j.1552-6569.2007.00147.x
  36. Tong X, 2020, TRANSL STROKE RES, V11, P1306, DOI 10.1007/s12975-020-00813-0
  37. Vergouwen MDI, 2012, STROKE, V43, P3003, DOI 10.1161/STROKEAHA.112.666867
  38. Voetsch B, 2004, ARCH NEUROL-CHICAGO, V61, P496, DOI 10.1001/archneur.61.4.496
  39. Yang HH, 2018, J STROKE CEREBROVASC, V27, P1570, DOI 10.1016/j.jstrokecerebrovasdis.2018.01.007
  40. Zaidat OO, 2013, STROKE, V44, P2650, DOI 10.1161/STROKEAHA.113.001972
  41. Zi WJ, 2020, JAMA NEUROL, V77, P561, DOI 10.1001/jamaneurol.2020.0156