Neurophysiological biomarkers of motor improvement from Constraint-Induced Movement Therapy and Robot-Assisted Therapy in participants with stroke

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN HUMAN NEUROSCIENCE, v.17, article ID 1188806, 9p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundThe mechanism of stroke recovery is related to the reorganization of cerebral activity that can be enhanced by rehabilitation therapy. Two well established treatments are Robot-Assisted Therapy (RT) and Constraint-Induced Movement Therapy (CIMT), however, it is unknown whether there is a difference in the neuroplastic changes induced by these therapies, and if the modifications are related to motor improvement. Therefore, this study aims to identify neurophysiological biomarkers related to motor improvement of participants with chronic stroke that received RT or CIMT, and to test whether there is a difference in neuronal changes induced by these two therapies.MethodsThis study included participants with chronic stroke that took part in a pilot experiment to compare CIMT vs. RT. Neurophysiological evaluations were performed with electroencephalography (EEG) and transcranial magnetic stimulation (TMS), pre and post rehabilitation therapy. Motor function was measured by the Wolf Motor Function Test (WMFT) and Fugl-Meyer Assessment Upper Limb (FMA-UL).ResultsTwenty-seven participants with chronic stroke completed the present study [mean age of 58.8 years (SD +/- 13.6), mean time since stroke of 18.2 months (SD +/- 9.6)]. We found that changes in motor threshold (MT) and motor evoked potential (MEP) in the lesioned hemisphere have a positive and negative correlation with WMFT improvement, respectively. The absolute change in alpha peak in the unlesioned hemisphere and the absolute change of the alpha ratio (unlesioned/lesioned hemisphere) is negatively correlated with WMFT improvement. The decrease of EEG power ratio (increase in the lesioned hemisphere and decrease in the unlesioned hemisphere) for high alpha bandwidths is correlated with better improvement in WMFT. The variable ""type of treatment (RT or CIMT)"" was not significant in the models.ConclusionOur results suggest that distinct treatments (RT and CIMT) have similar neuroplastic mechanisms of recovery. Moreover, motor improvements in participants with chronic stroke are related to decreases of cortical excitability in the lesioned hemisphere measured with TMS. Furthermore, the balance of both EEG power and EEG alpha peak frequency in the lesioned hemisphere is related to motor improvement.
Palavras-chave
stroke, predictors, electroencephalography, power analysis, robot-assisted therapy, constraint-induced movement therapy
Referências
  1. Adeyemo Bamidele O, 2012, Front Psychiatry, V3, P88, DOI 10.3389/fpsyt.2012.00088
  2. Ammann C, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01981
  3. Aronson Jeffrey K, 2017, Curr Protoc Pharmacol, V76, DOI 10.1002/cpph.19
  4. Bentes C, 2018, CLIN NEUROPHYSIOL, V129, P1680, DOI 10.1016/j.clinph.2018.05.021
  5. Bertani R, 2017, NEUROL SCI, V38, P1561, DOI 10.1007/s10072-017-2995-5
  6. Bertolucci F, 2018, RESTOR NEUROL NEUROS, V36, P83, DOI 10.3233/RNN-170778
  7. Bolognini N, 2011, NEUROREHAB NEURAL RE, V25, P819, DOI 10.1177/1545968311411056
  8. Calautti C, 2003, NEUROIMAGE, V19, P1650, DOI 10.1016/S1053-8119(03)00205-2
  9. CHATRIAN GE, 1959, ELECTROEN CLIN NEURO, V11, P497, DOI 10.1016/0013-4694(59)90048-3
  10. Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
  11. Di Lazzaro V, 2013, FRONT NEURAL CIRCUIT, V7, DOI 10.3389/fncir.2013.00018
  12. Di Pino G, 2014, NAT REV NEUROL, V10, P597, DOI 10.1038/nrneurol.2014.162
  13. Finnigan SP, 2007, CLIN NEUROPHYSIOL, V118, P2525, DOI 10.1016/j.clinph.2007.07.021
  14. Fregni F, 2006, STROKE, V37, P2115, DOI 10.1161/01.STR.0000231390.58967.6b
  15. Fregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051
  16. FUGLMEYER AR, 1975, SCAND J REHABIL MED, V7, P13
  17. Inamoto T, 2023, BRAIN SCI, V13, DOI 10.3390/brainsci13050751
  18. James SL, 2019, LANCET NEUROL, V18, P56, DOI [10.1016/S1474-4422(18)30415-0, 10.1016/S1474-4422(18)30499-X]
  19. Lee J, 2019, NEURAL PLAST, V2019, DOI 10.1155/2019/3826495
  20. Levin MF, 2009, NEUROREHAB NEURAL RE, V23, P313, DOI 10.1177/1545968308328727
  21. Li M, 2018, P I MECH ENG H, V232, P344, DOI 10.1177/0954411918755828
  22. Lin KC, 2009, NEUROREHAB NEURAL RE, V23, P429, DOI 10.1177/1545968308331144
  23. McDonnell MN, 2017, BRAIN STIMUL, V10, P721, DOI 10.1016/j.brs.2017.03.008
  24. Murase N, 2004, ANN NEUROL, V55, P400, DOI 10.1002/ana.10848
  25. Page SJ, 2012, ARCH PHYS MED REHAB, V93, P2373, DOI 10.1016/j.apmr.2012.06.017
  26. Pereira ND, 2011, REV BRAS FISIOTER, V15, P257, DOI 10.1590/S1413-35552011000300013
  27. Pfurtscheller G, 1999, J CLIN NEUROPHYSIOL, V16, P512, DOI 10.1097/00004691-199911000-00003
  28. Pineiro R, 2001, STROKE, V32, P1134, DOI 10.1161/01.STR.32.5.1134
  29. Rossini PM, 1998, NEUROREPORT, V9, P2141, DOI 10.1097/00001756-199806220-00043
  30. Rosso C, 2017, BRAIN STIMUL, V10, P952, DOI 10.1016/j.brs.2017.05.005
  31. Sheorajpanday RVA, 2009, CLIN NEUROPHYSIOL, V120, P845, DOI 10.1016/j.clinph.2009.02.171
  32. Simis M, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.695406
  33. Simis M, 2020, CLIN NEUROPHYSIOL, V131, P1806, DOI 10.1016/j.clinph.2020.04.166
  34. Simis M, 2016, NEUROPHYSIOL CLIN, V46, P53, DOI 10.1016/j.neucli.2016.01.003
  35. Simis M, 2016, RESTOR NEUROL NEUROS, V34, P45, DOI 10.3233/RNN-150550
  36. Terranova TT, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.684019
  37. Thibaut A, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00187
  38. Thrane G, 2014, J REHABIL MED, V46, P833, DOI 10.2340/16501977-1859
  39. Xu J, 2019, ANN NEUROL, V85, P502, DOI 10.1002/ana.25452
  40. Yin SY, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00364
  41. Ziemann U, 1996, EXP BRAIN RES, V109, P127