Neurophysiological biomarkers of motor improvement from Constraint-Induced Movement Therapy and Robot-Assisted Therapy in participants with stroke

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorSIMIS, Marcel
dc.contributor.authorTHIBAUT, Aurore
dc.contributor.authorIMAMURA, Marta
dc.contributor.authorBATTISTELLA, Linamara Rizzo
dc.contributor.authorFREGNI, Felipe
dc.date.accessioned2023-10-30T14:37:07Z
dc.date.available2023-10-30T14:37:07Z
dc.date.issued2023
dc.description.abstractBackgroundThe mechanism of stroke recovery is related to the reorganization of cerebral activity that can be enhanced by rehabilitation therapy. Two well established treatments are Robot-Assisted Therapy (RT) and Constraint-Induced Movement Therapy (CIMT), however, it is unknown whether there is a difference in the neuroplastic changes induced by these therapies, and if the modifications are related to motor improvement. Therefore, this study aims to identify neurophysiological biomarkers related to motor improvement of participants with chronic stroke that received RT or CIMT, and to test whether there is a difference in neuronal changes induced by these two therapies.MethodsThis study included participants with chronic stroke that took part in a pilot experiment to compare CIMT vs. RT. Neurophysiological evaluations were performed with electroencephalography (EEG) and transcranial magnetic stimulation (TMS), pre and post rehabilitation therapy. Motor function was measured by the Wolf Motor Function Test (WMFT) and Fugl-Meyer Assessment Upper Limb (FMA-UL).ResultsTwenty-seven participants with chronic stroke completed the present study [mean age of 58.8 years (SD +/- 13.6), mean time since stroke of 18.2 months (SD +/- 9.6)]. We found that changes in motor threshold (MT) and motor evoked potential (MEP) in the lesioned hemisphere have a positive and negative correlation with WMFT improvement, respectively. The absolute change in alpha peak in the unlesioned hemisphere and the absolute change of the alpha ratio (unlesioned/lesioned hemisphere) is negatively correlated with WMFT improvement. The decrease of EEG power ratio (increase in the lesioned hemisphere and decrease in the unlesioned hemisphere) for high alpha bandwidths is correlated with better improvement in WMFT. The variable ""type of treatment (RT or CIMT)"" was not significant in the models.ConclusionOur results suggest that distinct treatments (RT and CIMT) have similar neuroplastic mechanisms of recovery. Moreover, motor improvements in participants with chronic stroke are related to decreases of cortical excitability in the lesioned hemisphere measured with TMS. Furthermore, the balance of both EEG power and EEG alpha peak frequency in the lesioned hemisphere is related to motor improvement.eng
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipUSP NAP (Nucleos de Apoio a Pesquisa) University of So Paulo
dc.description.sponsorshipCenter for Advanced Studies in Rehabilitation-CEAR of the Hospital das Clinicas da Faculdade de Medicina da Universidade de So Paulo-HCFMUSP
dc.description.sponsorshipFundaco de Amparo a Pesquisa do Estado de So Paulo [2017/12943-8]
dc.identifier.citationFRONTIERS IN HUMAN NEUROSCIENCE, v.17, article ID 1188806, 9p, 2023
dc.identifier.doi10.3389/fnhum.2023.1188806
dc.identifier.issn1662-5161
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/56109
dc.language.isoeng
dc.publisherFRONTIERS MEDIA SAeng
dc.relation.ispartofFrontiers in Human Neuroscience
dc.rightsopenAccesseng
dc.rights.holderCopyright FRONTIERS MEDIA SAeng
dc.subjectstrokeeng
dc.subjectpredictorseng
dc.subjectelectroencephalographyeng
dc.subjectpower analysiseng
dc.subjectrobot-assisted therapyeng
dc.subjectconstraint-induced movement therapyeng
dc.subject.othersensorimotor cortex activationeng
dc.subject.otherquantitative eegeng
dc.subject.otherrehabilitationeng
dc.subject.otherpatienteng
dc.subject.otheradultseng
dc.subject.otherrhythmeng
dc.subject.othertrialeng
dc.subject.wosNeuroscienceseng
dc.subject.wosPsychologyeng
dc.titleNeurophysiological biomarkers of motor improvement from Constraint-Induced Movement Therapy and Robot-Assisted Therapy in participants with strokeeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryBélgica
hcfmusp.affiliation.countryEstados Unidos
hcfmusp.affiliation.countryisobe
hcfmusp.affiliation.countryisous
hcfmusp.author.externalTHIBAUT, Aurore:Univ Liege, Coma Sci Grp, GIGA Consciousness, Liege, Belgium
hcfmusp.author.externalFREGNI, Felipe:Harvard Med Sch, Spaulding Rehabil Hosp, Neuromodulat Ctr, Boston, MA USA
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcMARCEL SIMIS
hcfmusp.contributor.author-fmusphcMARTA IMAMURA
hcfmusp.contributor.author-fmusphcLINAMARA RIZZO BATTISTELLA
hcfmusp.description.articlenumber1188806
hcfmusp.description.volume17
hcfmusp.origemWOS
hcfmusp.origem.pubmed37780964
hcfmusp.origem.scopus2-s2.0-85173090743
hcfmusp.origem.wosWOS:001075091600001
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAdeyemo Bamidele O, 2012, Front Psychiatry, V3, P88, DOI 10.3389/fpsyt.2012.00088eng
hcfmusp.relation.referenceAmmann C, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01981eng
hcfmusp.relation.referenceAronson Jeffrey K, 2017, Curr Protoc Pharmacol, V76, DOI 10.1002/cpph.19eng
hcfmusp.relation.referenceBentes C, 2018, CLIN NEUROPHYSIOL, V129, P1680, DOI 10.1016/j.clinph.2018.05.021eng
hcfmusp.relation.referenceBertani R, 2017, NEUROL SCI, V38, P1561, DOI 10.1007/s10072-017-2995-5eng
hcfmusp.relation.referenceBertolucci F, 2018, RESTOR NEUROL NEUROS, V36, P83, DOI 10.3233/RNN-170778eng
hcfmusp.relation.referenceBolognini N, 2011, NEUROREHAB NEURAL RE, V25, P819, DOI 10.1177/1545968311411056eng
hcfmusp.relation.referenceCalautti C, 2003, NEUROIMAGE, V19, P1650, DOI 10.1016/S1053-8119(03)00205-2eng
hcfmusp.relation.referenceCHATRIAN GE, 1959, ELECTROEN CLIN NEURO, V11, P497, DOI 10.1016/0013-4694(59)90048-3eng
hcfmusp.relation.referenceDelorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009eng
hcfmusp.relation.referenceDi Lazzaro V, 2013, FRONT NEURAL CIRCUIT, V7, DOI 10.3389/fncir.2013.00018eng
hcfmusp.relation.referenceDi Pino G, 2014, NAT REV NEUROL, V10, P597, DOI 10.1038/nrneurol.2014.162eng
hcfmusp.relation.referenceFinnigan SP, 2007, CLIN NEUROPHYSIOL, V118, P2525, DOI 10.1016/j.clinph.2007.07.021eng
hcfmusp.relation.referenceFregni F, 2006, STROKE, V37, P2115, DOI 10.1161/01.STR.0000231390.58967.6beng
hcfmusp.relation.referenceFregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051eng
hcfmusp.relation.referenceFUGLMEYER AR, 1975, SCAND J REHABIL MED, V7, P13eng
hcfmusp.relation.referenceInamoto T, 2023, BRAIN SCI, V13, DOI 10.3390/brainsci13050751eng
hcfmusp.relation.referenceJames SL, 2019, LANCET NEUROL, V18, P56, DOI [10.1016/S1474-4422(18)30415-0, 10.1016/S1474-4422(18)30499-X]eng
hcfmusp.relation.referenceLee J, 2019, NEURAL PLAST, V2019, DOI 10.1155/2019/3826495eng
hcfmusp.relation.referenceLevin MF, 2009, NEUROREHAB NEURAL RE, V23, P313, DOI 10.1177/1545968308328727eng
hcfmusp.relation.referenceLi M, 2018, P I MECH ENG H, V232, P344, DOI 10.1177/0954411918755828eng
hcfmusp.relation.referenceLin KC, 2009, NEUROREHAB NEURAL RE, V23, P429, DOI 10.1177/1545968308331144eng
hcfmusp.relation.referenceMcDonnell MN, 2017, BRAIN STIMUL, V10, P721, DOI 10.1016/j.brs.2017.03.008eng
hcfmusp.relation.referenceMurase N, 2004, ANN NEUROL, V55, P400, DOI 10.1002/ana.10848eng
hcfmusp.relation.referencePage SJ, 2012, ARCH PHYS MED REHAB, V93, P2373, DOI 10.1016/j.apmr.2012.06.017eng
hcfmusp.relation.referencePereira ND, 2011, REV BRAS FISIOTER, V15, P257, DOI 10.1590/S1413-35552011000300013eng
hcfmusp.relation.referencePfurtscheller G, 1999, J CLIN NEUROPHYSIOL, V16, P512, DOI 10.1097/00004691-199911000-00003eng
hcfmusp.relation.referencePineiro R, 2001, STROKE, V32, P1134, DOI 10.1161/01.STR.32.5.1134eng
hcfmusp.relation.referenceRossini PM, 1998, NEUROREPORT, V9, P2141, DOI 10.1097/00001756-199806220-00043eng
hcfmusp.relation.referenceRosso C, 2017, BRAIN STIMUL, V10, P952, DOI 10.1016/j.brs.2017.05.005eng
hcfmusp.relation.referenceSheorajpanday RVA, 2009, CLIN NEUROPHYSIOL, V120, P845, DOI 10.1016/j.clinph.2009.02.171eng
hcfmusp.relation.referenceSimis M, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.695406eng
hcfmusp.relation.referenceSimis M, 2020, CLIN NEUROPHYSIOL, V131, P1806, DOI 10.1016/j.clinph.2020.04.166eng
hcfmusp.relation.referenceSimis M, 2016, NEUROPHYSIOL CLIN, V46, P53, DOI 10.1016/j.neucli.2016.01.003eng
hcfmusp.relation.referenceSimis M, 2016, RESTOR NEUROL NEUROS, V34, P45, DOI 10.3233/RNN-150550eng
hcfmusp.relation.referenceTerranova TT, 2021, FRONT NEUROROBOTICS, V15, DOI 10.3389/fnbot.2021.684019eng
hcfmusp.relation.referenceThibaut A, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00187eng
hcfmusp.relation.referenceThrane G, 2014, J REHABIL MED, V46, P833, DOI 10.2340/16501977-1859eng
hcfmusp.relation.referenceXu J, 2019, ANN NEUROL, V85, P502, DOI 10.1002/ana.25452eng
hcfmusp.relation.referenceYin SY, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00364eng
hcfmusp.relation.referenceZiemann U, 1996, EXP BRAIN RES, V109, P127eng
hcfmusp.scopus.lastupdate2024-06-16
relation.isAuthorOfPublication315869a8-36d0-49f9-b266-19a2b98de23a
relation.isAuthorOfPublicationae20da66-2611-4ebd-bc22-75487d0eeb25
relation.isAuthorOfPublicationd1d70547-3974-41df-8582-da1ee37b1f5b
relation.isAuthorOfPublication.latestForDiscovery315869a8-36d0-49f9-b266-19a2b98de23a
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_SIMIS_Neurophysiological_biomarkers_of_motor_improvement_from_ConstraintInduced_Movement_2023.PDF
Tamanho:
371.12 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)