Use of anodal transcranial direct current stimulation: Features, facets, and applications to incomplete spinal cord injury

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorARAúJO, A. V. L. de
dc.contributor.authorABILIO, M. dos Santos
dc.contributor.authorNASCIMENTO, D. A. do
dc.contributor.authorBARBOSA, V. R. N.
dc.contributor.authorYORK, B. S. de Albuquerque Cacique New
dc.date.accessioned2023-02-09T20:00:25Z
dc.date.available2023-02-09T20:00:25Z
dc.date.issued2022
dc.description.abstractMotor and sensory function impairments after an incomplete spinal cord injury generate a significant reduction in the functionality and quality of life, especially in a portion of working-age individuals. The development of research about effective interventions and adequate management should be a priority to rehabilitation postinjury. Anodal Transcranial Direct Current Stimulation, a low-intensity direct current, has been considered a noninvasive, painless, and safe stimulation. The anodal transcranial direct current stimulation effects appear to be related to modulation of the depolarization threshold in the neuronal membrane. Neuroplasticity in the neuronal circuit has been reported also. The potential to promote neuroplasticity by modulating the cortical excitability and motor descending pathways such as the corticospinal tract has an important place in rehabilitation. Therefore, stimuli to neuroplasticity to improve the effectiveness of rehabilitation after incomplete spinal cord injury should be investigated. Currently, anodal transcranial direct current stimulation effects on the cortical excitability, neuroplasticity, motor function, or functionality, and chronic neuropathic pain appear to reduce impairments after incomplete spinal cord injury. Studies should observe the short-, medium-, and long-term effects potentially related to the anodal transcranial direct current stimulation to define the therapy value to clinical practice. Besides, the cost-effectiveness and adherence level should be considered in future research. © 2022 Elsevier Inc. All rights reserved.
dc.identifier.citationde Araújo, A. V. L.; dos Santos Abilio, M.; do Nascimento, D. A.; Barbosa, V. R. N.; de Albuquerque Cacique New York, B. S.. Use of anodal transcranial direct current stimulation: Features, facets, and applications to incomplete spinal cord injury. In: . CELLULAR, MOLECULAR, PHYSIOLOGICAL, AND BEHAVIORAL ASPECTS OF SPINAL CORD INJURY: ELSEVIER, 2022. p.35-49.
dc.identifier.doi10.1016/B978-0-12-822427-4.00004-6
dc.identifier.isbn9780128224274; 9780128224281
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/51167
dc.language.isoeng
dc.publisherELSEVIER
dc.relation.ispartofCELLULAR, MOLECULAR, PHYSIOLOGICAL, AND BEHAVIORAL ASPECTS OF SPINAL CORD INJURY
dc.rightsrestrictedAccess
dc.rights.holderCopyright ELSEVIER
dc.subjecta-tDCS
dc.subjectAnodal transcranial direct current stimulation
dc.subjectIncomplete spinal cord injury
dc.subjectiSCI
dc.subjectNeuromodulation
dc.subjectNoninvasive stimulation
dc.subjectSpinal cord injury
dc.subjecttDCS
dc.subjectTranscranial direct current stimulation
dc.titleUse of anodal transcranial direct current stimulation: Features, facets, and applications to incomplete spinal cord injury
dc.typebookPart
dc.type.categorybook chapter
dc.type.versionpublishedVersion
dspace.entity.typePublication
hcfmusp.author.externalABILIO, M. dos Santos:Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
hcfmusp.author.externalNASCIMENTO, D. A. do:Department of Physiotherapy, State University of Paraiba R. Baraúnas, Paraíba, Brazil
hcfmusp.author.externalBARBOSA, V. R. N.:Department of Physiotherapy, State University of Paraiba R. Baraúnas, Paraíba, Brazil
hcfmusp.author.externalYORK, B. S. de Albuquerque Cacique New:Department of Physiotherapy, Federal University of Rio Grande do Norte, Lagoa Nova, Brazil
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcAMANDA VITORIA LACERDA DE ARAUJO
hcfmusp.description.beginpage35
hcfmusp.description.endpage49
hcfmusp.origemSCOPUS
hcfmusp.origem.scopus2-s2.0-85137506763
hcfmusp.relation.referenceAntal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A.R., Chen, R., Paulus, W., Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory, and application guidelines (2017) Clinical Neurophysiology, 128 (9), pp. 1774-1809
hcfmusp.relation.referenceBorrione, L., Moffa, A.H., Martin, D., Loo, C.K., Brunoni, A.R., Transcranial direct current stimulation in the acute depressive episode: A systematic review of current knowledge (2018) The Journal of ECT, 34 (3), pp. 153-163
hcfmusp.relation.referenceBroeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., Nieuwboer, A., Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects (2015) Neuroscience and Biobehavioral Reviews, 57, pp. 105-117
hcfmusp.relation.referenceBunday, K.L., Perez, M.A., Motor recovery after spinal cord injury is enhanced by strengthening corticospinal synaptic transmission (2012) Current Biology, 22 (24), pp. 2355-2361
hcfmusp.relation.referenceCarmel, J.B., Berrol, L.J., Brus-Ramer, M., Martin, J.H., Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth (2010) Journal of Neuroscience, 30 (32), pp. 10918-10926
hcfmusp.relation.referenceCarvalho, S., Leite, J., Jones, F., Morse, L.R., Zafonte, R., Fregni, F., Study adherence in a tDCS longitudinal clinical trial with people with spinal cord injury (2018) Spinal Cord, 56 (5), pp. 502-508
hcfmusp.relation.referenceCortes, M., Medeiros, A.H., Gandhi, A., Lee, P., Krebs, H.I., Thickbroom, G., Edwards, D., Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury (2017) NeuroRehabilitation, 41 (1), pp. 51-59
hcfmusp.relation.referenceDa Silva, F.T.G., Browne, R.A.V., Pinto, C.B., Saleh Velez, F.G., Do Egito, E.S.T., Do Rêgo, J.T.P., Fregni, F., Transcranial direct current stimulation in individuals with spinal cord injury: Assessment of autonomic nervous system activity (2017) Restorative Neurology and Neuroscience, 35 (2), pp. 159-169
hcfmusp.relation.referenceDe Araújo, A.V.L., Ribeiro, F.P.G., Massetti, T., Potter-Baker, K.A., Cortes, M., Plow, E.B., de Mello Monteiro, C.B., Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: A systematic review and meta-analysis (2020) Spinal Cord, 58 (6), pp. 635-646
hcfmusp.relation.referenceElsner, B., Kugler, J., Pohl, M., Mehrholz, J., Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke (2019) Cochrane Database of Systematic Reviews, 2019 (5)
hcfmusp.relation.referenceErb, W.H., Handbook of electro-therapeutics (1883), 27. , https://books.google.com.br/books/about/Handbook_of_Electro_Therapeutics.html?id=vf1DswEACAAJ&redir_esc=y, Retrieved from
hcfmusp.relation.referenceFawcett, J.W., Curt, A., Steeves, J.D., Coleman, W.P., Tuszynski, M.H., Lammertse, D., Short, D., Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials (2007) Spinal Cord, 45 (3), pp. 190-205
hcfmusp.relation.referenceFregni, F., El-Hagrassy, M.M., Pacheco-Barrios, K., Carvalho, S., Leite, J., Simis, M., Brunoni, A.R., Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders (2020) The International Journal of Neuropsychopharmacology
hcfmusp.relation.referenceHorvath, J.C., Vogrin, S.J., Carter, O., Cook, M.J., Forte, J.D., Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials was found to be highly variable within individuals over 9 testing sessions (2016) Experimental Brain Research, 234 (9), pp. 2629-2642
hcfmusp.relation.referenceJamil, A., Batsikadze, G., Kuo, H., Meesen, R.L.J., Dechent, P., Paulus, W., Nitsche, M.A., Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study (2020) Human Brain Mapping, 41 (6), pp. 1644-1666
hcfmusp.relation.referenceKhorasanizadeh, M.H., Yousefifard, M., Eskian, M., Lu, Y., Chalangari, M., Harrop, J.S., Rahimi-Movaghar, V., Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis (2019) Journal of Neurosurgery: Spine, 30 (5), pp. 683-699
hcfmusp.relation.referenceKim, Y., Missing data handling in chronic pain trials (2011) Journal of Biopharmaceutical Statistics, 21 (2), pp. 311-325
hcfmusp.relation.referenceKumru, H., Murillo, N., Benito-Penalva, J., Tormos, J.M., Vidal, J., Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat® gait training (2016) Neuroscience Letters, 620, pp. 143-147
hcfmusp.relation.referenceKumru, H., Soler, D., Vidal, J., Navarro, X., Tormos, J.M., Pascual-Leone, A., Valls-Sole, J., The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: An evoked potentials and quantitative thermal testing study (2013) European Journal of Pain, 17 (1), pp. 55-66
hcfmusp.relation.referenceLefaucheur, J.P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Paulus, W., Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) (2017) Clinical Neurophysiology, 128 (1), pp. 56-92
hcfmusp.relation.referenceLi, S., Breathing-controlled Electrical Stimulation (BreEStim) for management of neuropathic pain and spasticity (2013) Journal of Visualized Experiments, 71
hcfmusp.relation.referenceLi, Y., Fan, J., Yang, J., He, C., Li, S., Effects of transcranial direct current stimulation on walking ability after stroke: A systematic review and meta-analysis (2018) Restorative Neurology and Neuroscience, 36 (1), pp. 59-71
hcfmusp.relation.referenceLi, S., Stampas, A., Frontera, J., Davis, M., Combined transcranial direct current stimulation and breathing-controlled electrical stimulation for management of neuropathic pain after spinal cord injury (2018) Journal of Rehabilitation Medicine, 50 (9), pp. 814-820
hcfmusp.relation.referenceLippold, O.C., Redfearn, J.W., Mental changes resulting from the passage of small direct currents through the human brain (1964) The British Journal of Psychiatry: The Journal of Mental Science, 110, pp. 768-772
hcfmusp.relation.referenceMartin, J.H., Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury (2016) Neural Regeneration Research, 11 (9), pp. 1389-1391
hcfmusp.relation.referenceMatsushima, Y., Hachisuka, A., Itoh, H., Sugimoto, K., Saeki, S., Safety and feasibility of transcranial direct current stimulation for patients with post-polio syndrome (2019) Brain Stimulation, 12 (2), p. 431
hcfmusp.relation.referenceMehta, S., Mcintyre, A., Guy, S., Teasell, R.W., Loh, E., Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: A meta-analysis (2015) Spinal Cord, 53, pp. 780-785
hcfmusp.relation.referenceMurray, L.M., Edwards, D.J., Ruffini, G., Labar, D., Stampas, A., Pascual-Leone, A., Cortes, M., Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury (2015) Archives of Physical Medicine and Rehabilitation, 96 (4), pp. S114-S121
hcfmusp.relation.referenceNgernyam, N., Jensen, M.P., Arayawichanon, P., Auvichayapat, N., Tiamkao, S., Janjarasjitt, S., Auvichayapat, P., The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury (2015) Clinical Neurophysiology, 126 (2), pp. 382-390
hcfmusp.relation.referenceNitsche, M.A., Paulus, W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation (2000) Journal of Physiology, 527 (3), pp. 633-639
hcfmusp.relation.referencePodda, M.V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S.A., Grassi, C., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression (2016) Scientific Reports, 6 (1), pp. 1-19
hcfmusp.relation.referencePotter-Baker, K.A., Transcranial direct current stimulation (tDCS) paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: A pilot study (2017) Journal of Spinal Cord Medicine, 41 (5), pp. 503-517
hcfmusp.relation.referencePotter-Baker, K.A., Variability of motor evoked potentials in stroke explained by corticospinal pathway integrity (2018) Brain Stimulation, 11 (4)
hcfmusp.relation.referenceRaithatha, R., Carrico, C., Powell, E.S., Westgate, P.M., Chelette, K.C., Lee, K., Sawaki, L., Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study (2016) NeuroRehabilitation, 38 (1), pp. 15-25
hcfmusp.relation.referenceRenga, V., Electricity, neurology, and noninvasive brain stimulation: Looking back, looking ahead (2020) Neurology Research International
hcfmusp.relation.referenceRich, T.L., Gillick, B.T., Electrode placement in transcranial direct current stimulation—How reliable is the determination of C3/C4? (2019) Brain Sciences, 9 (3)
hcfmusp.relation.referenceSalmon, E., Carrico, C., Nichols, L., Reddy, L., Salles, S., Sawaki, L., Transcranial direct current stimulation to enhance motor function in spinal cord injury: Pilot data (2014), 2014, pp. 1-6. , 2014 IEEE 16th international conference on E-health networking, applications and services, Healthcom
hcfmusp.relation.referenceSarmiento, C.I., San-Juan, D., Prasath, V.B.S., Letter to the Editor: Brief history of transcranial direct current stimulation (tDCS): From electric fishes to microcontrollers (2016) Psychological Medicine, 46, pp. 3259-3261
hcfmusp.relation.referenceSerra-Añó, P., Montesinos, L.L., Morales, J., López-Bueno, L., Gomis, M., García-Massó, X., González, L.M., Heart rate variability in individuals with thoracic spinal cord injury (2015) Spinal Cord, 53 (1), pp. 59-63
hcfmusp.relation.referenceSoler, M.D., Kumru, H., Pelayo, R., Vidal, J., Tormos, J.M., Fregni, F., Pascual-Leone, A., Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury (2010) Brain, 133 (9), pp. 2565-2577
hcfmusp.relation.referenceSoler, D., Moriña, D., Kumru, H., Vidal, J., Navarro, X., Transcranial direct current stimulation and visual illusion effect according to sensory phenotypes in patients with spinal cord injury and neuropathic pain (2020) The Journal of Pain
hcfmusp.relation.referenceThibaut, A., Carvalho, S., Morse, L.R., Zafonte, R., Fregni, F., Delayed pain decrease following M1 tDCS in spinal cord injury: A randomized controlled clinical trial (2017) Neuroscience Letters, 658, pp. 19-26
hcfmusp.relation.referenceTreede, R.D., Jensen, T.S., Campbell, J.N., Cruccu, G., Dostrovsky, J.O., Griffin, J.W., Serra, J., Neuropathic pain: Redefinition and a grading system for clinical and research purposes (2008) Neurology, 70 (18), pp. 1630-1635
hcfmusp.relation.referenceTruong, D.Q., Bikson, M., Physics of transcranial direct current stimulation devices and their history (2018) The Journal of ECT, 34 (3), pp. 137-143
hcfmusp.relation.referenceWilliams, R., Murray, A., Prevalence of depression after spinal cord injury: A meta-analysis (2015) Archives of Physical Medicine and Rehabilitation, 96 (1), pp. 133-140
hcfmusp.relation.referenceYamaguchi, T., Fujiwara, T., Tsai, Y.A., Tang, S.C., Kawakami, M., Mizuno, K., Liu, M., The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury (2016) Experimental Brain Research, 234 (6), pp. 1469-1478
hcfmusp.relation.referenceYoon, E.J., Kim, Y.K., Kim, H.R., Kim, S.E., Lee, Y., Shin, H.I., Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: A mechanistic PET study (2014) Neurorehabilitation and Neural Repair, 28 (3), pp. 250-259
hcfmusp.relation.referenceYozbatiran, N., Keser, Z., Davis, M., Stampas, A., O’Malley, M.K., Cooper-Hay, C., Francisco, G.E., Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study (2016) NeuroRehabilitation, 39 (3), pp. 401-411
hcfmusp.relation.referenceYozbatiran, N., Keser, Z., Hasan, K., Stampas, A., Korupolu, R., Kim, S., Francisco, G.E., White matter changes in corticospinal tract associated with improvement in arm and hand functions in incomplete cervical spinal cord injury: Pilot case series (2017) Spinal Cord Series And Cases, 3 (1), pp. 1-5
hcfmusp.relation.referenceYu, B., Qiu, H., Li, J., Zhong, C., Li, J., Noninvasive brain stimulation does not improve neuropathic pain in individuals with spinal cord injury: Evidence from a meta-analysis of 11 randomized controlled trials (2020) American Journal of Physical Medicine and Rehabilitation, 99 (9), pp. 811-820
hcfmusp.relation.referenceKashiwagi, F.T., El Dib, R., Gomaa, H., Gawish, N., Suzumura, E.A., Da Silva, T.R., Bazan, R., Noninvasive brain stimulations for unilateral spatial neglect after stroke: A systematic review and meta-analysis of randomized and nonrandomized controlled trials (2018) Neural Plasticity, 2018
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublicationf7e1791b-853b-44bc-afe5-57ef73863f04
relation.isAuthorOfPublication.latestForDiscoveryf7e1791b-853b-44bc-afe5-57ef73863f04
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_ARAúJO_Use_of_anodal_transcranial_direct_current_stimulation_Features_2022.PDF
Tamanho:
1.38 MB
Formato:
Adobe Portable Document Format