Bone Marrow Cells Improve Coronary Flow Reserve in Ischemic Nonrevascularized Myocardium

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorASSUNCAO-JR, Antonildes N.
dc.contributor.authorROCHITTE, Carlos Eduardo
dc.contributor.authorKWONG, Raymond Y.
dc.contributor.authorGOWDAK, Luis Henrique Wolff
dc.contributor.authorKRIEGER, Jose Eduardo
dc.contributor.authorJEROSCH-HEROLD, Michael
dc.date.accessioned2022-08-12T17:05:54Z
dc.date.available2022-08-12T17:05:54Z
dc.date.issued2022
dc.description.abstractOBJECTIVES This study investigated whether intramyocardial bone marrow-derived hematopoietic progenitor cells (BMCs) increase coronary flow reserve (CFR) in ischemic myocardial regions where direct revascularization was unsuitable. BACKGROUND Patients with diffuse coronary artery disease frequently undergo incomplete myocardial revascularization, which increases their risk for future adverse cardiovascular outcomes. The residual regional ischemia related to both untreated epicardial lesions and small vessel disease usually contributes to the disease burden. METHODS The MiHeart/IHD study randomized patients with diffuse coronary artery disease undergoing incomplete coronary artery bypass grafting to receive BMCs or placebo in ischemic myocardial regions. After the procedure, 78 patients underwent cardiovascular magnetic resonance (CMR) at 1, 6, and 12 months and were included in this cardiac magnetic resonance substudy with perfusion quantification. Segments were classified as target (injected), adjacent (surrounding the injection site), and remote from injection site. RESULTS Of 1,248 segments, 269 were target (22%), 397 (32%) adjacent, and 582 (46%) remote. The target had significantly lower CFR at baseline (1.40 +/- 0.79 vs 1.64 +/- 0.89 in adjacent and 1.79 +/- 0.79 in remote; both P < 0.05). BMCs significantly increased CFR in target and adjacent segments at 6 and 12 months compared with placebo. In target regions, there was a progressive treatment effect (27.1% at 6 months, P = 0.037, 42.2% at 12 months, P = 0.001). In the adjacent segments, CFR increased by 21.8% (P = 0.023) at 6 months, which persisted until 12 months (22.6%; P = 0.022). Remote segments in both the BMC and placebo groups experienced similar improvements in CFR (not significant at 12 months compared with baseline). CONCLUSIONS BMCs, injected in severely ischemic regions unsuitable for direct revascularization, led to the largest CFR improvements, which progressed up to 12 months, compared with smaller but persistent CFR changes in adjacent and no improvement in remote segments. (J Am Coll Cardiol Img 2022;15:812-824) (c) 2022 The Authors.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipMinistry of Health of Brazil (FINEP) [0-1-04-0967-0-0]
dc.identifier.citationJACC-CARDIOVASCULAR IMAGING, v.15, n.5, p.812-824, 2022
dc.identifier.doi10.1016/j.jcmg.2021.12.011
dc.identifier.eissn1876-7591
dc.identifier.issn1936-878X
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/48357
dc.language.isoeng
dc.publisherELSEVIER SCIENCE INCeng
dc.relation.ispartofJacc-Cardiovascular Imaging
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright ELSEVIER SCIENCE INCeng
dc.subjectbone marrow-derived hematopoietic progenitor cellseng
dc.subjectcardiac magnetic resonanceeng
dc.subjectcoronary artery bypass grafteng
dc.subjectcoronary artery diseaseeng
dc.subjectcoronary flow reserveeng
dc.subject.otherheart-diseaseeng
dc.subject.otherblood-floweng
dc.subject.othertissue perfusioneng
dc.subject.otherprogenitor cellseng
dc.subject.otherartery-diseaseeng
dc.subject.otherrevascularizationeng
dc.subject.otherdeliveryeng
dc.subject.othertherapyeng
dc.subject.otherinjectioneng
dc.subject.otherseverityeng
dc.subject.wosCardiac & Cardiovascular Systemseng
dc.subject.wosRadiology, Nuclear Medicine & Medical Imagingeng
dc.titleBone Marrow Cells Improve Coronary Flow Reserve in Ischemic Nonrevascularized Myocardiumeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryEstados Unidos
hcfmusp.affiliation.countryisous
hcfmusp.author.externalKWONG, Raymond Y.:Brigham & Womens Hosp, Harvard Med Sch, Div Cardiovasc Med & Radiol, Boston, MA USA
hcfmusp.author.externalJEROSCH-HEROLD, Michael:Brigham & Womens Hosp, Harvard Med Sch, Div Cardiovasc Med & Radiol, Boston, MA USA
hcfmusp.citation.scopus4
hcfmusp.contributor.author-fmusphcANTONILDES NASCIMENTO ASSUNCAO JUNIOR
hcfmusp.contributor.author-fmusphcCARLOS EDUARDO ROCHITTE
hcfmusp.contributor.author-fmusphcLUIS HENRIQUE WOLFF GOWDAK
hcfmusp.contributor.author-fmusphcJOSE EDUARDO KRIEGER
hcfmusp.description.beginpage812
hcfmusp.description.endpage824
hcfmusp.description.issue5
hcfmusp.description.volume15
hcfmusp.origemWOS
hcfmusp.origem.pubmed35512954
hcfmusp.origem.scopus2-s2.0-85128626188
hcfmusp.origem.wosWOS:000808099000013
hcfmusp.publisher.cityNEW YORKeng
hcfmusp.publisher.countryUSAeng
hcfmusp.relation.referenceAikawa T, 2019, CARDIOVASC RES, V115, P119, DOI 10.1093/cvr/cvy169eng
hcfmusp.relation.referenceCogle CR, 2014, CIRC RES, V115, P867, DOI 10.1161/CIRCRESAHA.115.304353eng
hcfmusp.relation.referenceCZERNIN J, 1993, CIRCULATION, V88, P62, DOI 10.1161/01.CIR.88.1.62eng
hcfmusp.relation.referenceFadini GP, 2012, CIRC RES, V110, P624, DOI 10.1161/CIRCRESAHA.111.243386eng
hcfmusp.relation.referenceGarcia S, 2013, J AM COLL CARDIOL, V62, P1421, DOI 10.1016/j.jacc.2013.05.033eng
hcfmusp.relation.referenceGould K Lance, 2015, Circ Cardiovasc Imaging, V8, DOI 10.1161/CIRCIMAGING.114.003099eng
hcfmusp.relation.referenceHead SJ, 2014, EUR HEART J, V35, P2821, DOI 10.1093/eurheartj/ehu213eng
hcfmusp.relation.referenceIngram DA, 2004, BLOOD, V104, P2752, DOI 10.1182/blood-2004-04-1396eng
hcfmusp.relation.referenceJerosch-Herold M, 2002, MED PHYS, V29, P886, DOI 10.1118/1.1473135eng
hcfmusp.relation.referenceJerosch-Herold M, 2010, J CARDIOVASC MAGN R, V12, DOI 10.1186/1532-429X-12-57eng
hcfmusp.relation.referenceJimenez-Quevedo P, 2014, CIRC RES, V115, P950, DOI 10.1161/CIRCRESAHA.115.303463eng
hcfmusp.relation.referenceKarantalis V, 2014, CIRC RES, V114, P1302, DOI 10.1161/CIRCRESAHA.114.303180eng
hcfmusp.relation.referenceKlinke V, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-55eng
hcfmusp.relation.referenceKramer CM, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-91eng
hcfmusp.relation.referenceLiu C, 2014, J NUCL MED, V55, P1573, DOI 10.2967/jnumed.114.144550eng
hcfmusp.relation.referenceLosordo DW, 2011, CIRC RES, V109, P428, DOI 10.1161/CIRCRESAHA.111.245993eng
hcfmusp.relation.referenceNguyen PK, 2016, JAMA CARDIOL, V1, P831, DOI 10.1001/jamacardio.2016.2225eng
hcfmusp.relation.referenceSchuleri KH, 2008, AM J PHYSIOL-HEART C, V294, pH2002, DOI 10.1152/ajpheart.00762.2007eng
hcfmusp.relation.referenceStamm C, 2007, J THORAC CARDIOV SUR, V133, P717, DOI 10.1016/j.jtcvs.2006.08.077eng
hcfmusp.relation.referenceSuncion VY, 2014, CIRC RES, V114, P1292, DOI 10.1161/CIRCRESAHA.114.302854eng
hcfmusp.relation.referenceTaqueti VR, 2015, CIRCULATION, V131, P19, DOI 10.1161/CIRCULATIONAHA.114.011939eng
hcfmusp.relation.referenceTREASURE CB, 1993, CIRCULATION, V87, P86, DOI 10.1161/01.CIR.87.1.86eng
hcfmusp.relation.referenceTse HF, 2007, EUR HEART J, V28, P2998, DOI 10.1093/eurheartj/ehm485eng
hcfmusp.relation.referenceTura BR, 2007, TRIALS, V8, DOI 10.1186/1745-6215-8-2eng
hcfmusp.relation.referenceUREN NG, 1994, NEW ENGL J MED, V330, P1782, DOI 10.1056/NEJM199406233302503eng
hcfmusp.relation.referencevan de Hoef TP, 2014, CIRC-CARDIOVASC INTE, V7, P301, DOI 10.1161/CIRCINTERVENTIONS.113.001049eng
hcfmusp.relation.referencevan Ramshorst J, 2009, JAMA-J AM MED ASSOC, V301, P1997, DOI 10.1001/jama.2009.685eng
hcfmusp.relation.referenceVieira RD, 2012, CIRCULATION, V126, pS158, DOI 10.1161/CIRCULATIONAHA.111.084236eng
hcfmusp.relation.referenceWang SH, 2010, CARDIOLOGY, V117, P140, DOI 10.1159/000320217eng
hcfmusp.relation.referenceWojakowski W, 2017, CIRC RES, V120, P670, DOI 10.1161/CIRCRESAHA.116.309009eng
hcfmusp.relation.referenceZhao Q, 2011, EXPERT OPIN BIOL TH, V11, P1569, DOI 10.1517/14712598.2011.616491eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication5f08dc5d-7db9-481c-9806-c8bf506afd06
relation.isAuthorOfPublicatione2e8fbd4-e06d-4a3f-a0e9-76a4650e56f2
relation.isAuthorOfPublicatione0ab09b6-a894-4b61-b5ce-0fde4671de72
relation.isAuthorOfPublicationa970d450-bcd4-4662-94d6-ad1c6d043b3c
relation.isAuthorOfPublication.latestForDiscovery5f08dc5d-7db9-481c-9806-c8bf506afd06
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_ASSUNCAO-JR_Bone_Marrow_Cells_Improve_Coronary_Flow_Reserve_in_2022.PDF
Tamanho:
1.4 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)