Effects of Exercise Training on Left Ventricular Diastolic Function Markers in Patients with Obstructive Sleep Apnea: A Randomized Study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
Sociedade Brasileira de Cardiologia
Citação
INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES, v.35, n.5, p.646-656, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Abstract Background Exercise training (ET) is an adjunctive treatment for obstructive sleep apnea (OSA) and its consequences. However, the effects of exercise on heart remodeling are unknown in the population with OSA. Objective We investigated the effect of ET on markers of diastolic function, sleep parameters, and functional capacity in patients with OSA. Methods Sedentary patients with OSA (apnea-hypopnea index, AHI ≥15 events/hr) were randomly assigned to untrained (n=18) and trained (n=20) strategies. Polysomnography, cardiopulmonary exercise test, and echocardiography were evaluated at the beginning and end of the study. ET consisted of 3 weekly sessions of aerobic exercise, resistance exercises, and flexibility training (72 sessions, completed in 11.65±0.86 months). A two-way analysis of variance (ANOVA) was used, followed by Tukey's post-hoc test. The level of statistical significance was set at p<0.05 for all analyses. Result Thirty-eight patients were included (AHI:45±29 events/hr, age:52±7 y, body mass index: 30±4 kg/m2). They had similar baseline parameters. ET caused a significant change in OSA severity (AHI:4.5±18 versus -5.7±13 events/hr; arousal index:1.5±8 versus -6.1±13 events/hr, in untrained and trained groups respectively, p<0.05). The trained patients had an increase in functional capacity after intervention. ET improved isovolumetric relaxation time (IVRT, untrained=6.5±17.3 versus trained=-5.1±17.1 msec, p<0.05). There was a significant correlation between changes in IVRT and arousal index in the trained group (r =-0.54, p<0.05). No difference occurred in the other diastolic function parameters evaluated. Conclusion ET promotes modest but significant improvement in AHI, functional capacity, and cardiac IVRT, a validated parameter of diastolic function.
Palavras-chave
Sleep Apnea, Obstructive, Heart Ventricles, Exercise
Referências
  1. Alchanatis M, Left Ventricular Function in Patients with Obstructive Sleep Apnoea
  2. Araújo CEL, 2021, Braz J Med Biol Res, V54
  3. Arias MA, 2005, CIRCULATION, V112, P375, DOI 10.1161/CIRCULATIONAHA.104.501841
  4. Baguet JP, 2010, EUR RESPIR J, V36, P1323, DOI 10.1183/09031936.00165709
  5. Baynard T, 2008, OBESITY, V16, P1277, DOI 10.1038/oby.2008.212
  6. Bodez D, 2016, ARCH CARDIOVASC DIS, V109, P494, DOI 10.1016/j.acvd.2016.02.011
  7. Bradley TD, 2009, LANCET, V373, P82, DOI 10.1016/S0140-6736(08)61622-0
  8. Brenner DA, 2001, CIRCULATION, V104, P221, DOI 10.1161/01.CIR.104.2.221
  9. BRINKER JA, 1980, CIRCULATION, V61, P626, DOI 10.1161/01.CIR.61.3.626
  10. Butt M, 2012, CIRC-HEART FAIL, V5, P226, DOI 10.1161/CIRCHEARTFAILURE.111.964106
  11. Chowdhuri S, 2016, AM J RESP CRIT CARE, V193, pE37, DOI 10.1164/rccm.201602-0361ST
  12. Danica LP, 2014, ScientificWorldJournal, V2014
  13. Dewan NA, 2015, CHEST, V147, P266, DOI 10.1378/chest.14-0500
  14. Drager LF, 2007, CHEST, V131, P1379, DOI 10.1378/chest.06-2703
  15. Dursunoglu D, 2005, EUR RESPIR J, V26, P283, DOI 10.1183/09031936.05.00038804
  16. Fung JWH, 2002, CHEST, V121, P422, DOI 10.1378/chest.121.2.422
  17. Guerra RS, 2019, MED SCI SPORT EXER, V51, P426, DOI 10.1249/MSS.0000000000001805
  18. Hotta K, 2017, J PHYSIOL-LONDON, V595, P3703, DOI 10.1113/JP274172
  19. Kawanishi Y, 2009, INT J CARDIOL, V133, P129, DOI 10.1016/j.ijcard.2007.08.132
  20. Kepez A, 2009, ECHOCARDIOGR-J CARD, V26, P388, DOI 10.1111/j.1540-8175.2008.00809.x
  21. Kline CE, 2016, EUR RESPIR J, V48, P23, DOI 10.1183/13993003.00797-2016
  22. Kodama S, 2009, JAMA-J AM MED ASSOC, V301, P2024, DOI 10.1001/jama.2009.681
  23. Koshiba Hiroya, 2019, J Phys Ther Sci, V31, P88, DOI 10.1589/jpts.31.88
  24. Lavie L, 2015, SLEEP MED REV, V20, P27, DOI 10.1016/j.smrv.2014.07.003
  25. LEVY WC, 1993, CIRCULATION, V88, P116, DOI 10.1161/01.CIR.88.1.116
  26. Maeder MT, 2016, VASC HEALTH RISK MAN, V12, P85, DOI 10.2147/VHRM.S74703
  27. Maki-Nunes C, 2015, OBESITY, V23, P1582, DOI 10.1002/oby.21126
  28. MYRENG Y, 1990, CIRCULATION, V81, P260, DOI 10.1161/01.CIR.81.1.260
  29. Nagueh SF, 2016, J AM SOC ECHOCARDIOG, V29, P277, DOI 10.1016/j.echo.2016.01.011
  30. Pearson MJ, 2017, HEART FAIL REV, V22, P229, DOI 10.1007/s10741-017-9600-0
  31. Pearson MJ, 2017, INT J CARDIOL, V231, P234, DOI 10.1016/j.ijcard.2016.12.145
  32. Romero-Corral A, 2007, CHEST, V132, P1863, DOI 10.1378/chest.07-0966
  33. Sengul YS, 2011, SLEEP BREATH, V15, P49, DOI 10.1007/s11325-009-0311-1
  34. SHIOMI T, 1991, CHEST, V100, P894, DOI 10.1378/chest.100.4.894
  35. Somers VK, 2008, CIRCULATION, V118, P1080, DOI 10.1161/CIRCULATIONAHA.107.189375
  36. TAKEMOTO KA, 1992, AM HEART J, V124, P143, DOI 10.1016/0002-8703(92)90932-L
  37. Tanaka LY, 2015, NITRIC OXIDE-BIOL CH, V45, P7, DOI 10.1016/j.niox.2015.01.003
  38. Ueno LM, 2009, SLEEP, V32, P637, DOI 10.1093/sleep/32.5.637
  39. White LH, 2013, J PHYSIOL-LONDON, V591, P1179, DOI 10.1113/jphysiol.2012.245159
  40. 2000, Respiration, V67, P367