Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MULTINI, Laura Cristina
MARRELLI, Mauro Toledo
WILKE, Andre Barretto Bruno
Citação
ACTA TROPICA, v.211, article ID 105593, 10p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Culicidae comprises more than 3500 species, some of which are responsible for the spread of various human diseases, causing millions of deaths worldwide. Correct identification of these species is essential for the development of surveillance and control strategies. The most common method of mosquito identification is based on specific traits of the external morphology of species. However, identification of mosquitoes by morphological characters can be inaccurate or even unfeasible if the specimen is damaged or there is a lack of distinguishing features, as in the case of cryptic species complexes. Wing geometric morphometrics is a reliable, affordable tool for the identification of mosquito species, including sibling species. More importantly, it can be used in addition to both traditional morphologic identification methods as well as genetic approaches. Here, wing geometric morphometrics was used to identify sixteen mosquito species from eight genera: Aedes, Coquillettidia, Culex, Limatus, Mansonia, Psorophora, Runchomyia, and Wyeomyia. The 390 specimens used here were collected in Sao Paulo, Brazil using CDC traps, aspiration, and Shannon traps. Allometry was assessed by multivariate regression of the Procrustes coordinates on centroid size followed by canonical variate analysis and a pairwise cross-validated reclassification test. A Neighbor-Joining tree based on Mahalanobis distances was constructed with 1,000 bootstrap replicates using MorphoJ 1.02 and Past 2.17c. The canonical variate analysis of genera resulted in distinct clusters for Culex, Limatus, and Psorophora and partial overlapping between Aedes, Coquilettidia, and Mansonia, and between Runchomyia and Wyeomyia. Pairwise cross-validated reclassification tests indicated that genera were identified with an accuracy of at least 99% and subgenera with a mean accuracy of 96% and that in 160 of the 240 possible comparisons species were identified with an accuracy of 100%. Our results show that the eight genera in the study were correctly distinguished by wing shape, as were subgenera and most species, demonstrating that wing geometric morphometrics can be used for the identification of the mosquito species studied here.
Palavras-chave
Culicidae, Neglected species, Wing geometric morphometrics
Referências
  1. Achee NL, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0006822
  2. Araki A.S., 2016, J MED ENTOMOL, V54
  3. Auguste AJ, 2010, AM J TROP MED HYG, V83, P1262, DOI 10.4269/ajtmh.2010.10-0280
  4. Barrio-Nuevo K.M., 2019, THESIS
  5. Beebe NW, 2007, J MED ENTOMOL, V44, P376, DOI 10.1603/0022-2585(2007)44[376:APCRDT]2.0.CO;2
  6. Benelli G, 2020, TRENDS PARASITOL, V36, P942, DOI 10.1016/j.pt.2020.01.001
  7. Benelli G, 2017, ACTA TROP, V174, P91, DOI 10.1016/j.actatropica.2017.06.028
  8. Bernard KA, 2001, EMERG INFECT DIS, V7, P679
  9. Borstler J, 2014, J VECTOR ECOL, V39, P204, DOI 10.1111/j.1948-7134.2014.12088.x
  10. Wilke ABB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161643
  11. Calado DC, 2005, REV BRAS ZOOL, V22, P1127, DOI 10.1590/S0101-81752005000400045
  12. Calle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021
  13. Cardoso JD, 2010, EMERG INFECT DIS, V16, P1918, DOI 10.3201/eid1612.100608
  14. Cardoso JD, 2010, REV SOC BRAS MED TRO, V43, P552, DOI 10.1590/S0037-86822010000500016
  15. Changbunjong T, 2016, FOLIA PARASIT, V63, DOI 10.14411/fp.2016.037
  16. Chowdhary R, 2012, J GEN VIROL, V93, P1023, DOI 10.1099/vir.0.039479-0
  17. Christe RD, 2019, ENTOMOL GEN, V39, P183, DOI 10.1127/entomologia/2019/0763
  18. Darsie Jr R.F., 2000, TECHNICAL B FLORIDA
  19. de Carvalho GC, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2348-5
  20. Deardorff ER, 2010, AM J TROP MED HYG, V82, P1047, DOI 10.4269/ajtmh.2010.09-0556
  21. DeLopes O.S., 1981, AM J EPIDEMIOL, V113, P122
  22. dos Santos LG, 2008, REV BRAS ENTOMOL, V52, P105, DOI 10.1590/S0085-56262008000100018
  23. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  24. Engdahl C, 2014, MOL ECOL RESOUR, V14, P478, DOI 10.1111/1755-0998.12202
  25. Etienne C, 2017, AM J TROP MED HYG, V97, P16, DOI 10.4269/ajtmh.17-0207
  26. Farajollahi A, 2011, INFECT GENET EVOL, V11, P1577, DOI 10.1016/j.meegid.2011.08.013
  27. Faria NR, 2017, NATURE, V546, P406, DOI 10.1038/nature22401
  28. Faria NR, 2016, SCIENCE, V352, P345, DOI 10.1126/science.aaf5036
  29. Fernandes JN, 2018, TRENDS PARASITOL, V34, P359, DOI 10.1016/j.pt.2018.01.005
  30. Fonseca DM, 2004, SCIENCE, V303, P1535, DOI 10.1126/science.1094247
  31. Ximenes MDFD, 2020, ACTA TROP, V209, DOI 10.1016/j.actatropica.2020.105538
  32. Gaffigan T.V., 2001, SYSTEMATIC CATALOG C
  33. Garros C, 2013, ANOPHELES MOSQUITOES - NEW INSIGHTS INTO MALARIA VECTORS, P81, DOI 10.5772/56090
  34. Giovanetti M., 2019, J VIROL, V94, P2016
  35. Githeko AK, 1996, EXP PARASITOL, V82, P306, DOI 10.1006/expr.1996.0038
  36. GOMES AD, 1985, REV SAUDE PUBL, V19, P190, DOI 10.1590/S0034-89101985000200009
  37. Gubler Duane J, 2011, Trop Med Health, V39, P3, DOI 10.2149/tmh.2011-S05
  38. Nunes PCG, 2019, BMC PUBLIC HEALTH, V19, DOI 10.1186/s12889-019-6641-4
  39. Hammer Oyvind, 2001, Palaeontologia Electronica, V4, pUnpaginated
  40. Harbach R.E., 2018, MOSQUITO TAXONOMIC I
  41. Harbach RE, 2007, ZOOTAXA, P591
  42. Harbach RE, 1998, SYST ENTOMOL, V23, P327, DOI 10.1046/j.1365-3113.1998.00072.x
  43. Iversson Lygia Busch, 1994, Revista do Instituto de Medicina Tropical de Sao Paulo, V36, P343, DOI 10.1590/S0036-46651994000400007
  44. Jaramillo N, 2015, MED VET ENTOMOL, V29, P26, DOI 10.1111/mve.12091
  45. Kirchgatter K, 2020, INSECTS, V11, DOI 10.3390/insects11050324
  46. LANE C J, 1992, Mosquito Systematics, V24, P16
  47. Laporta GZ, 2012, CAD SAUDE PUBLICA, V28, P229, DOI 10.1590/S0102-311X2012000200003
  48. Laurito M, 2015, ZOOMORPHOLOGY, V134, P447, DOI 10.1007/s00435-015-0271-x
  49. Lima-Camara TN, 2016, REV SAUDE PUBL, V50, DOI [10.1590/S1518-8787.2016050006245, 10.1590/s1518-8787.2016050006245]
  50. LOPES J, 1993, REV SAUDE PUBL, V27, P326, DOI 10.1590/S0034-89101993000500002
  51. Lorenz C, 2020, INFECT GENET EVOL, V77, DOI 10.1016/j.meegid.2019.104052
  52. Lorenz C, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005959
  53. Lorenz C, 2017, INFECT GENET EVOL, V54, P205, DOI 10.1016/j.meegid.2017.06.029
  54. Lorenz C, 2015, INFECT GENET EVOL, V35, P144, DOI 10.1016/j.meegid.2015.08.011
  55. Lorenz C, 2014, PARASITE VECTOR, V7, DOI 10.1186/s13071-014-0581-8
  56. Lorenz C, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-257
  57. LOURENCODEOLIVEIRA, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/JOURNAL.PNTD.0005698
  58. Mendez W, 2001, J MED ENTOMOL, V38, P813, DOI 10.1603/0022-2585-38.6.813
  59. MITCHELL CJ, 1986, REV SAUDE PUBL, V20, P171, DOI 10.1590/S0034-89101986000300001
  60. Figueiredo LTM, 2007, REV SOC BRAS MED TRO, V40, P224, DOI 10.1590/S0037-86822007000200016
  61. Moreno ES, 2011, REV SOC BRAS MED TRO, V44, P290, DOI [10.1590/s0037-86822011005000041, 10.1590/S0037-86822011005000041]
  62. Mourao MPG, 2009, EMERG INFECT DIS, V15, P2063, DOI 10.3201/eid1512.090917
  63. Multini LC, 2019, ACTA TROP, V190, P30, DOI 10.1016/j.actatropica.2018.10.009
  64. Orlandin E, 2017, BRAZ J BIOL, V77, P60, DOI 10.1590/1519-6984.09815
  65. Pan American Health Organization/World Health Organization-PAHO/ WHO, 2019, REP CAS DENG FEV AM
  66. Paules CI, 2017, NEW ENGL J MED, V376, P1397, DOI 10.1056/NEJMp1702172
  67. Pecor James E., 1992, Contributions of the American Entomological Institute, V27, P1
  68. Petrarca V, 1998, J MED ENTOMOL, V35, P16, DOI 10.1093/jmedent/35.1.16
  69. Reinert JF, 2004, ZOOL J LINN SOC-LOND, V142, P289, DOI 10.1111/j.1096-3642.2004.00144.x
  70. Roca-Garcia M, 1944, J INFECT DIS, V75, P160, DOI 10.1093/infdis/75.2.160
  71. Rohlf FJ, 2015, HYSTRIX, V26, P9, DOI 10.4404/hystrix-26.1-11264
  72. Sallum MAM, 1996, J AM MOSQUITO CONTR, V12, P517
  73. Segura M., 2007, ATLAS CULICIDEOS AMA
  74. Sinka ME, 2010, PARASITE VECTOR, V3, DOI 10.1186/1756-3305-3-72
  75. Sontigun N, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2163-z
  76. Nunes MRT, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0348-x
  77. Toma T, 2000, J MED ENTOMOL, V37, P554, DOI 10.1603/0022-2585-37.4.554
  78. Torres-Gutierrez C, 2015, ZOOTAXA, V4028, P1, DOI 10.11646/zootaxa.4028.1.1
  79. Turell MJ, 2005, J MED ENTOMOL, V42, P891, DOI 10.1603/0022-2585(2005)042[0891:IOVFMD]2.0.CO;2
  80. Turell MJ, 2000, J MED ENTOMOL, V37, P835, DOI 10.1603/0022-2585-37.6.835
  81. Unlu I, 2010, J MED ENTOMOL, V47, P625, DOI 10.1603/ME09087
  82. Vasconcelos P., 1998, OVERVIEW ARBOVIROLOG, P72
  83. VASCONCELOS PFD, 1991, REV INST MED TROP SP, V33, P465, DOI 10.1590/S0036-46651991000600007
  84. Vidal PO, 2011, REV BRAS ENTOMOL, V55, P134, DOI 10.1590/S0085-56262011000100022
  85. Weeraratne TC, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-2810-z
  86. WHITE GB, 1974, T ROY SOC TROP MED H, V68, P278, DOI 10.1016/0035-9203(74)90035-2
  87. Wilk-da-Silva R, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-3154-4
  88. Wilke ABB, 2019, CURR OPIN INSECT SCI, V35, P1, DOI 10.1016/j.cois.2019.06.002
  89. Wilke ABB, 2018, TRENDS PARASITOL, V34, P456, DOI 10.1016/j.pt.2018.02.003
  90. World Health Organization, 2017, GLOB VECT CONTR RESP
  91. World Health Organization-WHO, 2017, NEGL TROP DIS MOSQ B
  92. Zanluca C, 2015, MEM I OSWALDO CRUZ, V110, P569, DOI 10.1590/0074-02760150192