ANA LETICIA DA SILVA DE SOUZA

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 14 Citação(ões) na Scopus
    Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale
    (2019) MULTINI, Laura Cristina; SOUZA, Ana Leticia da Silva de; MARRELLI, Mauro Toledo; WILKE, Andre Barretto Bruno
    Aedes albopictus is an invasive mosquito species that has spread globally and can transmit several arboviruses, including dengue, chikungunya and yellow fever. The species was first reported in Brazil in 1986 and since then has been found in 24 of the 27 Brazilian states, often in peri-urban environments close to highly urbanized areas. To date, population genetics of this important mosquito in areas in the city of Sao Paulo has not been investigated. In this study, we used 12 microsatellite loci to investigate the microgeographic population genetics of Ae. albopictus, which is present throughout the city of Sao Paulo. All the analyses revealed structuring of the populations studied, divided into two groups with restricted gene flow between them and without evidence of isolation by distance. We propose two hypotheses to explain the results: (i) low dispersal capability-limited gene flow between populations is due to the low dispersal capability inherent to Ae. albopictus; and (ii) multiple introductions-the structure identified here results from multiple introductions, which led to different dispersal patterns within the city and more genetic heterogeneity. The ability of Ae. albopictus to invade new areas and expand may explain why these mosquito populations appear to be well established and thriving in the city of Sao Paulo.
  • article 18 Citação(ões) na Scopus
    The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae)
    (2020) MULTINI, Laura Cristina; SOUZA, Ana Leticia da Silva de; MARRELLI, Mauro Toledo; WILKE, Andre Barretto Bruno
    Fragmentation of natural environments as a result of human interference has been associated with a decrease in species richness and increase in abundance of a few species that have adapted to these environments. The Brazilian Atlantic Forest, which has been undergoing an intense process of fragmentation and deforestation caused by human-made changes to the environment, is an important hotspot for malaria transmission. The main vector of simian and human malaria in this biome is the mosquito Anopheles cruzii. Anthropogenic processes reduce the availability of natural resources at the tree canopies, An. cruzii primary habitat. As a consequence, An. cruzii moves to the border of the Atlantic Forest nearing urban areas seeking resources, increasing their contact with humans in the process. We hypothesized that different levels of anthropogenic changes to the environment can be an important factor in driving the genetic structure and diversity in An. cruzii populations. Five different hypotheses using a cross-sectional and a longitudinal design were tested to assess genetic structure in sympatric An. cruzii populations and microevolutionary processes driving these populations. Single nucleotide polymorphisms were used to assess microgeographic genetic structure in An. cruzii populations in a low-endemicity area in the city of Sao Paulo, Brazil. Our results show an overall weak genetic structure among the populations, indicating a high gene flow system. However, our results also pointed to the presence of significant genetic structure between sympatric An. cruzii populations collected at ground and tree-canopy habitats in the urban environment and higher genetic variation in the ground-level population. This indicates that anthropogenic modifications leading to habitat fragmentation and a higher genetic diversity and structure in groundlevel populations could be driving the behavior of An. cruzii, ultimately increasing its contact with humans. Understanding how anthropogenic changes in natural areas affect An. cruzii is essential for the development of more effective mosquito control strategies and, on a broader scale, for malariaelimination efforts in the Brazilian Atlantic Forest.
  • article 17 Citação(ões) na Scopus
    Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance
    (2020) SOUZA, Ana Leticia da Silva de; MULTINI, Laura Cristina; MARRELLI, Mauro Toledo; WILKE, Andre Barretto Bruno
    Culicidae comprises more than 3500 species, some of which are responsible for the spread of various human diseases, causing millions of deaths worldwide. Correct identification of these species is essential for the development of surveillance and control strategies. The most common method of mosquito identification is based on specific traits of the external morphology of species. However, identification of mosquitoes by morphological characters can be inaccurate or even unfeasible if the specimen is damaged or there is a lack of distinguishing features, as in the case of cryptic species complexes. Wing geometric morphometrics is a reliable, affordable tool for the identification of mosquito species, including sibling species. More importantly, it can be used in addition to both traditional morphologic identification methods as well as genetic approaches. Here, wing geometric morphometrics was used to identify sixteen mosquito species from eight genera: Aedes, Coquillettidia, Culex, Limatus, Mansonia, Psorophora, Runchomyia, and Wyeomyia. The 390 specimens used here were collected in Sao Paulo, Brazil using CDC traps, aspiration, and Shannon traps. Allometry was assessed by multivariate regression of the Procrustes coordinates on centroid size followed by canonical variate analysis and a pairwise cross-validated reclassification test. A Neighbor-Joining tree based on Mahalanobis distances was constructed with 1,000 bootstrap replicates using MorphoJ 1.02 and Past 2.17c. The canonical variate analysis of genera resulted in distinct clusters for Culex, Limatus, and Psorophora and partial overlapping between Aedes, Coquilettidia, and Mansonia, and between Runchomyia and Wyeomyia. Pairwise cross-validated reclassification tests indicated that genera were identified with an accuracy of at least 99% and subgenera with a mean accuracy of 96% and that in 160 of the 240 possible comparisons species were identified with an accuracy of 100%. Our results show that the eight genera in the study were correctly distinguished by wing shape, as were subgenera and most species, demonstrating that wing geometric morphometrics can be used for the identification of the mosquito species studied here.