Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries

Carregando...
Imagem de Miniatura
Citações na Scopus
63
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
ALAHMAD, Barrak
KHRAISHAH, Haitham
ROYE, Dominic
VICEDO-CABRERA, Ana Maria
GUO, Yuming
PAPATHEODOROU, Stefania I.
ACHILLEOS, Souzana
ACQUAOTTA, Fiorella
ARMSTRONG, Ben
BELL, Michelle L.
Citação
CIRCULATION, v.147, n.1, p.35-46, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background:Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods:We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results:The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. Conclusions:Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.
Palavras-chave
climate change, cold temperature, heart failure, heat, hot temperature, myocardial ischemia, stroke
Referências
  1. Anderson BG, 2009, EPIDEMIOLOGY, V20, P205, DOI 10.1097/EDE.0b013e318190ee08
  2. Armstrong BG, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-122
  3. Baccini M, 2008, EPIDEMIOLOGY, V19, P711, DOI 10.1097/EDE.0b013e318176bfcd
  4. Barrett JR, 2015, ENVIRON HEALTH PERSP, V123, pA184, DOI 10.1289/ehp.123-A184
  5. Bobb JF, 2014, ENVIRON HEALTH PERSP, V122, P811, DOI 10.1289/ehp.1307392
  6. Braga ALF, 2002, ENVIRON HEALTH PERSP, V110, P859, DOI 10.1289/ehp.02110859
  7. Bunker A, 2016, EBIOMEDICINE, V6, P258, DOI 10.1016/j.ebiom.2016.02.034
  8. Chen K, 2019, EUR HEART J, V40, P1600, DOI 10.1093/eurheartj/ehz116
  9. Crandall CG, 2015, COMPR PHYSIOL, V5, P17, DOI 10.1002/cphy.c140015
  10. Feigin VL, 2021, LANCET NEUROL, V20, P795, DOI 10.1016/S1474-4422(21)00252-0
  11. Fries RP, 1997, AM J CARDIOL, V79, P1194, DOI 10.1016/S0002-9149(97)00081-7
  12. Gasparrini A, 2012, STAT MED, V31, P3821, DOI 10.1002/sim.5471
  13. Gasparrini A, 2010, STAT MED, V29, P2224, DOI 10.1002/sim.3940
  14. Gasparrini A, 2015, LANCET, V386, P369, DOI 10.1016/S0140-6736(14)62114-0
  15. Gasparrini A, 2014, BMC MED RES METHODOL, V14, DOI 10.1186/1471-2288-14-55
  16. Gasparrini A, 2013, BMC MED RES METHODOL, V13, DOI 10.1186/1471-2288-13-1
  17. *GBD 2019 RISK FAC, 2019, LANCET, V0396
  18. Greaney JL, 2016, AUTON NEUROSCI-BASIC, V196, P81, DOI 10.1016/j.autneu.2015.11.002
  19. Guo YM, 2012, SCI REP-UK, V2, DOI 10.1038/srep00830
  20. Inglis SC, 2008, EUR J HEART FAIL, V10, P540, DOI 10.1016/j.ejheart.2008.03.008
  21. Jaakkola JJK, 2003, EUR RESPIR J, V21, p81S, DOI 10.1183/09031936.03.00402703
  22. Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130
  23. Lavados PM, 2018, STROKE, V49, P255, DOI 10.1161/STROKEAHA.117.017838
  24. Liu C, 2019, NEW ENGL J MED, V381, P705, DOI 10.1056/NEJMoa1817364
  25. Liu CQ, 2015, AM J PHYSIOL-HEART C, V309, pH1793, DOI 10.1152/ajpheart.00199.2015
  26. McGuinn L, 2013, INT J BIOMETEOROL, V57, P655, DOI 10.1007/s00484-012-0591-1
  27. Meng X, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n534
  28. Mensah GA, 2017, CIRC RES, V120, P366, DOI 10.1161/CIRCRESAHA.116.309115
  29. Mistry MN, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-09049-4
  30. Moghadamnia MT, 2017, PEERJ, V5, DOI 10.7717/peerj.3574
  31. Peng RD, 2011, ENVIRON HEALTH PERSP, V119, P701, DOI 10.1289/ehp.1002430
  32. Peters A, 2021, NAT REV CARDIOL, V18, P1, DOI 10.1038/s41569-020-00473-5
  33. Pimentel Maurício, 2006, Arq. Bras. Cardiol., V87, P403, DOI 10.1590/S0066-782X2006001700002
  34. Qiu H, 2013, CIRC-HEART FAIL, V6, P930, DOI 10.1161/CIRCHEARTFAILURE.113.000360
  35. Roth GA, 2017, J AM COLL CARDIOL, V70, P1, DOI 10.1016/j.jacc.2017.04.052
  36. Sarofim MC., 2016, IMPACTS CLIMATE CHAN
  37. Schulte F, 2021, SWISS MED WKLY, V151, DOI 10.4414/SMW.2021.w30013
  38. Scovronick N, 2018, ENVIRON RES, V161, P229, DOI 10.1016/j.envres.2017.11.001
  39. Sera F, 2019, STAT MED, V38, P5429, DOI 10.1002/sim.8362
  40. Silveira IH, 2019, SCI TOTAL ENVIRON, V691, P996, DOI 10.1016/j.scitotenv.2019.06.493
  41. Stewart S, 2017, NAT REV CARDIOL, V14, P654, DOI 10.1038/nrcardio.2017.76
  42. Tobias A, 2021, ENVIRON EPIDEMIOL, V5, DOI 10.1097/EE9.0000000000000169
  43. Turner H., 2007, GEN NONLINEAR MODELS
  44. Vicedo-Cabrera AM, 2021, NAT CLIM CHANGE, V11, P492, DOI 10.1038/s41558-021-01058-x
  45. Vicedo-Cabrera AM, 2020, BMJ-BRIT MED J, V368, DOI 10.1136/bmj.m108
  46. Vicedo-Cabrera AM, 2016, AM J EPIDEMIOL, V183, P286, DOI 10.1093/aje/kwv205
  47. Yang J, 2015, HEART, V101, P1966, DOI 10.1136/heartjnl-2015-308062
  48. Yin Q, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12663-y
  49. Zanobetti A, 2017, J AIR WASTE MANAGE, V67, P96, DOI 10.1080/10962247.2016.1252808
  50. Zhao Q, 2021, LANCET PLANET HEALTH, V5, pE415, DOI 10.1016/S2542-5196(21)00081-4
  51. Zorrilla-Vaca A, 2017, INT J BIOMETEOROL, V61, P821, DOI 10.1007/s00484-016-1260-6