Broadband Sound Administration Improves Sleep Onset Latency in Healthy Subjects in a Model of Transient Insomnia

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
MESSINEO, Ludovico
TARANTO-MONTEMURRO, Luigi
SANDS, Scott A.
AZABARZIN, Ali
WELLMAN, David Andrew
Citação
FRONTIERS IN NEUROLOGY, v.8, article ID 718, 8p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Insomnia is a major public health problem in western countries. Previous small pilot studies showed that the administration of constant white noise can improve sleep quality, increase acoustic arousal threshold, and reduce sleep onset latency. In this randomized controlled trial, we tested the effect of surrounding broadband sound administration on sleep onset latency, sleep architecture, and subjective sleep quality in healthy subjects. Methods: Eighteen healthy subjects were studied with two overnight sleep studies approximately one week apart. They were exposed in random order to normal environmental noise (40.1 [1.3] dB) or to broadband sound administration uniformly distributed in the room by two speakers (46.0 [0.9] dB). To model transient insomnia, subjects went to bed (""lights out"") 90 min before usual bedtime. Results: Broadband sound administration reduced sleep onset latency to stage 2 sleep (time from lights out to first epoch of non-rapid eye movement-sleep stage 2) (19 [16] vs. 13 [23] min, p = 0.011; median reduction 38% baseline). In a subgroup reporting trouble initiating sleep at home (Pittsburgh Sleep Quality Index section 2 score = 1), sound administration improved subjective sleep quality (p = 0.037) and the frequency of arousals from sleep (p = 0.03). Conclusion: In an experimental model of transient insomnia in young healthy individuals, broadband sound administration significantly reduced sleep onset latency by 38% compared to normal environmental noise. These findings suggest that broadband sound administration might be helpful to minimize insomnia symptoms in selected individuals.
Palavras-chave
filtered white noise, sleep onset latency, insomnia alternative treatments, effective sleep aids, increased arousal threshold
Referências
  1. Afshar P Farokhnezhad, 2016, J CARING SCI, V5, P103
  2. Bastien CH, 2001, SLEEP MED, V2, P297, DOI 10.1016/S1389-9457(00)00065-4
  3. Berry RB, 2012, J CLIN SLEEP MED, V8, P597, DOI 10.5664/jcsm.2172
  4. BREZINOVA V, 1974, ELECTROEN CLIN NEURO, V36, P275
  5. Bursac Z, 2008, SOURCE CODE BIOL MED, V3, DOI 10.1186/1751-0473-3-17
  6. Buxton Orfeu M, 2015, Sleep Health, V1, P15
  7. BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4
  8. Carskadon MA, 2005, PRINCIPLES PRACTICE, P1359
  9. Delgutte B., 1996, AUDITORY COMPUTATION, P157
  10. Dijk DJ, 2012, J PSYCHOPHARMACOL, V26, P1096, DOI 10.1177/0269881111421971
  11. Erman MK, 2001, HUM PSYCHOPHARM CLIN, V16, P169, DOI 10.1002/hup.238
  12. Evandt J, 2017, SLEEP, V40, DOI 10.1093/sleep/zsw055
  13. Grandner MA, 2012, SLEEP, V35, P395, DOI 10.5665/sleep.1704
  14. Groeger JA, 2004, J SLEEP RES, V13, P359, DOI 10.1111/j.1365-2869.2004.00418.x
  15. Halonen JI, 2012, ENVIRON HEALTH PERSP, V120, P1391, DOI 10.1289/ehp.1205026
  16. Harvey AG, 2014, J CONSULT CLIN PSYCH, V82, P670, DOI 10.1037/a0036606
  17. HODDES E, 1973, PSYCHOPHYSIOLOGY, V10, P431, DOI 10.1111/j.1469-8986.1973.tb00801.x
  18. JOHNS MW, 1991, SLEEP, V14, P540, DOI 10.1093/sleep/14.6.540
  19. Katzenell U, 2001, OTOL NEUROTOL, V22, P321, DOI 10.1097/00129492-200105000-00009
  20. Morin CM, 2006, SLEEP, V29, P1398, DOI 10.1093/sleep/29.11.1398
  21. Morin CM, 2015, NAT REV DIS PRIMERS, V1, DOI 10.1038/nrdp.2015.26
  22. Morin CM, 1999, JAMA-J AM MED ASSOC, V281, P991, DOI 10.1001/jama.281.11.991
  23. Moss F, 2004, CLIN NEUROPHYSIOL, V115, P267, DOI 10.1016/j.clinph.2003.09.014
  24. The National Sleep Foundation, 2012, 2012 BEDR POLL
  25. NICHOLSON AN, 1976, BRIT J CLIN PHARMACO, V3, P533, DOI 10.1111/j.1365-2125.1976.tb04872.x
  26. Ohayon MM, 2004, SLEEP, V27, P1255, DOI 10.1093/sleep/27.7.1255
  27. Ozminkowski RJ, 2007, SLEEP, V30, P263, DOI 10.1093/sleep/30.3.263
  28. Parthasarathy S, 2015, AM J MED, V128, P268, DOI 10.1016/j.amjmed.2014.10.015
  29. Rosenberg R, 2005, SLEEP MED, V6, P15, DOI 10.1016/j.sleep.2004.09.001
  30. SCOTT TD, 1972, PSYCHOPHYSIOLOGY, V9, P227, DOI 10.1111/j.1469-8986.1972.tb00757.x
  31. SPENCER JAD, 1990, ARCH DIS CHILD, V65, P135, DOI 10.1136/adc.65.1.135
  32. Stanchina ML, 2005, SLEEP MED, V6, P423, DOI 10.1016/j.sleep.2004.12.004
  33. TERZANO MG, 1988, PHARMACOL BIOCHEM BE, V29, P827, DOI 10.1016/0091-3057(88)90218-3
  34. VGONTZAS AN, 1995, PHARMACOLOGY, V51, P205, DOI 10.1159/000139363
  35. WALSH JK, 1990, J CLIN PSYCHOPHARM, V10, P184
  36. Ward LM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014371
  37. Ward LM, 2009, CONTEMP PHYS, V50, P563, DOI 10.1080/00107510902879246
  38. Williamson J W, 1992, Am J Crit Care, V1, P91
  39. Zaharna M, 2010, NOISE HEALTH, V12, P64, DOI 10.4103/1463-1741.63205
  40. Zhou JH, 2012, J THEOR BIOL, V306, P68, DOI 10.1016/j.jtbi.2012.04.006
  41. ZWISLOCKI JJ, 1972, J ACOUST SOC AM, V52, P644, DOI 10.1121/1.1913154
  42. Zwislocki JJ, 1978, HDB PERCEPTION, P238