Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
FLISTER, Karla Frida Torres
PINTO, Bruno Araujo Serra
FRANCA, Lucas Martins
COELHO, Caio Fernando Ferreira
SANTOS, Pamela Costa dos
VALE, Caroline Castro
PAES, Antonio Marcus de Andrade
Citação
JOURNAL OF NUTRITIONAL BIOCHEMISTRY, v.62, p.155-166, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Childhood consumption of added sugars, such as sucrose, has been associated to increased risk of metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Although the mechanisms underlying NAFLD onset are incompletely defined, recent evidence has proposed a role for the endoplasmic reticulum (ER) stress. Thus, the present study sought to investigate the metabolic outcomes of high-sucrose intake on weaned Swiss mice fed a 25% sucrose diet for 30, 60 and 90 days in comparison to regular chow-fed controls. High-sucrose feeding promoted progressive metabolic and oxidative disturbances, starting from fasting and fed hyperglycemia, hyperinsulinemia, glucose intolerance and increased adiposity at 30-days; passing by insulin resistance, hypertriglyceridemia and NAFLD onset at 60 days; until late hepatic oxidative damage at 90 days. In parallel, assessment of transcriptional and/or translational levels of de novo lipogenesis (DNL) and ER stress markers showed up-regulation of both fatty acid synthesis (ChREBP and SCD1) and oxidation (PPAR alpha and CPT-1 alpha), as well as overexpression of unfolded protein response sensors (IRE1 alpha, PERK and ATF6), chaperones (GRP78 and PDIA1) and antioxidant defense (NRF2) genes at 30 days. At 60 days, fatty acid oxidation genes were down-regulated, and ER stress switched over toward a proapoptotic pattern via up-regulation of BAK protein and CHOP gene levels. Finally, down-regulation of both NRF2 and CPT-1 alpha protein levels led to late up-regulation of SREBP-1c and exponential raise of fatty acids synthesis. In conclusion, our study originally demonstrates a temporal relationship between DNL and ER stress pathways toward MetS and NAFLD development on weaned rats fed a high-sucrose diet.
Palavras-chave
Nonalcoholic fatty liver disease, Endoplasmic reticulum stress, De novo lipogenesis, High-sucrose diet, Microvesicular steatosis, Metabolic syndrome
Referências
  1. ALjohani AM, 2017, TRENDS ENDOCRIN MET, V28, P831, DOI 10.1016/j.tem.2017.10.003
  2. Asrih M, 2014, CLIN NUTR, V33, P186, DOI 10.1016/j.clnu.2013.11.003
  3. Baiceanu A, 2016, NAT REV ENDOCRINOL, V12, P710, DOI 10.1038/nrendo.2016.124
  4. Balakumar M, 2016, MOL CELL BIOCHEM, V423, P93, DOI 10.1007/s11010-016-2828-5
  5. BERNARDIS LL, 1968, J ENDOCRINOL, V40, P527, DOI 10.1677/joe.0.0400527
  6. Bertot LC, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17050774
  7. Bruce KD, 2010, J NUTR, V140, P648, DOI 10.3945/jn.109.111179
  8. Burgeiro A, 2017, NUTRIENTS, V9, DOI 10.3390/nu9060638
  9. Chen ZG, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0572-9
  10. Cheng HS, 2017, J ADV RES, V8, P743, DOI 10.1016/j.jare.2017.10.002
  11. Chiu S, 2014, EUR J CLIN NUTR, V68, P416, DOI 10.1038/ejcn.2014.8
  12. Choi Y, 2017, FOOD CHEM TOXICOL, V103, P111, DOI 10.1016/j.fct.2017.02.039
  13. Day CP, 1998, GASTROENTEROLOGY, V114, P842, DOI 10.1016/S0016-5085(98)70599-2
  14. De Long NE, 2017, J APPL TOXICOL, V37, P1507, DOI 10.1002/jat.3502
  15. DEFRONZO RA, 1988, DIABETES, V37, P667, DOI 10.2337/diab.37.6.667
  16. Desai M, 2013, CURR DIABETES REP, V13, P27, DOI 10.1007/s11892-012-0344-x
  17. Duwaerts CC, 2017, CELL MOL GASTROENTER, V4, P223, DOI 10.1016/j.jcmgh.2017.04.004
  18. Fernandes-Lima F, 2015, CELLS TISSUES ORGANS, V201, P464, DOI 10.1159/000446514
  19. Freedman DS, 2005, INT J OBESITY, V29, P1, DOI 10.1038/sj.ijo.0802735
  20. FROMENTY B, 1995, PHARMACOL THERAPEUT, V67, P101, DOI 10.1016/0163-7258(95)00012-6
  21. Fu SN, 2011, NATURE, V473, P528, DOI 10.1038/nature09968
  22. Gregor MF, 2009, DIABETES, V58, P693, DOI 10.2337/db08-1220
  23. Guerrero-Romero F, 2010, J CLIN ENDOCR METAB, V95, P3347, DOI 10.1210/jc.2010-0288
  24. GUTMAN RA, 1987, METABOLISM, V36, P1013, DOI 10.1016/0026-0495(87)90019-9
  25. Haufe S, 2011, HEPATOLOGY, V53, P1504, DOI 10.1002/hep.24242
  26. Henkel A, 2013, SEMIN LIVER DIS, V33, P321, DOI 10.1055/s-0033-1358522
  27. Hetz C, 2012, NAT REV MOL CELL BIO, V13, P89, DOI 10.1038/nrm3270
  28. Hilton C, 2015, BBA-MOL CELL BIOL L, V1851, P686, DOI 10.1016/j.bbalip.2015.02.003
  29. Itoh Hiroaki, 2018, Adv Exp Med Biol, V1012, P29, DOI 10.1007/978-981-10-5526-3_4
  30. Kammoun HL, 2009, J CLIN INVEST, V119, P1201, DOI 10.1172/JCI37007
  31. Kawaguchi T, 2001, P NATL ACAD SCI USA, V98, P13710, DOI 10.1073/pnas.231370798
  32. Kim MS, 2016, J CLIN INVEST, V126, P4372, DOI 10.1172/JCI81993
  33. Kleiner DE, 2005, HEPATOLOGY, V41, P1313, DOI 10.1002/hep.20701
  34. Klockars A, 2015, FRONT ENDOCRINOL, V6, DOI 10.3389/fendo.2015.00065
  35. Lane MD, 2009, BIOCHEM BIOPH RES CO, V382, P1, DOI 10.1016/j.bbrc.2009.02.145
  36. Lee JH, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10523-7
  37. Lee WC, 2018, BIOMED J, V41, P96, DOI 10.1016/j.bj.2018.02.006
  38. Lima ML, 2016, J DIABETES RES, V2016
  39. Linden AG, 2018, J LIPID RES, V59, P475, DOI 10.1194/jlr.M081836
  40. Lombardo YB, 1996, METABOLISM, V45, P1527, DOI 10.1016/S0026-0495(96)90183-3
  41. Sousa RML, 2018, NUTR METAB, V15, DOI 10.1186/s12986-018-0290-y
  42. Malik VS, 2010, CIRCULATION, V121, P1356, DOI 10.1161/CIRCULATIONAHA.109.876185
  43. MATTHEWS DR, 1985, DIABETOLOGIA, V28, P412, DOI 10.1007/BF00280883
  44. Narain A, 2017, INT J CLIN PRACT, V71, DOI 10.1111/ijcp.12927
  45. Nigro D, 2017, J NUTR BIOCHEM, V42, P160, DOI 10.1016/j.jnutbio.2017.01.010
  46. Oliveira LSC, 2014, J NUTR BIOCHEM, V25, P193, DOI 10.1016/j.jnutbio.2013.10.006
  47. Olofsson SO, 2005, J INTERN MED, V258, P395, DOI 10.1111/j.1365-2796.2005.01556.x
  48. Oyadomari S, 2008, CELL METAB, V7, P520, DOI 10.1016/j.cmet.2008.04.011
  49. Ozcan U, 2004, SCIENCE, V306, P457, DOI 10.1126/science.1103160
  50. Pihan P, 2017, CELL DEATH DIFFER, V24, P1478, DOI 10.1038/cdd.2017.82
  51. Pinto BAS, 2016, METAB BRAIN DIS, P1
  52. Povero D, 2016, DIABETES METAB J, V40, P1, DOI 10.4093/dmj.2016.40.1.1
  53. Rafacho A, 2007, CAN J PHYSIOL PHARM, V85, P536, DOI 10.1139/Y07-037
  54. Roncal-Jimenez CA, 2011, METABOLISM, V60, P1259, DOI 10.1016/j.metabol.2011.01.008
  55. Rutkowski DT, 2008, DEV CELL, V15, P829, DOI 10.1016/j.devcel.2008.10.015
  56. Scorrano L, 2003, SCIENCE, V300, P135, DOI 10.1126/science.1081208
  57. Sellayah D, 2014, ENDOCRINOLOGY, V155, P1573, DOI 10.1210/en.2013-2103
  58. Softic S, 2017, J CLIN INVEST, V127, P4059, DOI 10.1172/JCI94585
  59. Soria A, 2001, J APPL PHYSIOL, V91, P2109
  60. Su QZ, 2014, AM J PHYSIOL-ENDOC M, V306, pE1264, DOI 10.1152/ajpendo.00438.2013
  61. Tandra S, 2011, J HEPATOL, V55, P654, DOI 10.1016/j.jhep.2010.11.021
  62. Tappy L, 2010, PHYSIOL REV, V90, P23, DOI 10.1152/physrev.00019.2009
  63. ter Horst KW, 2017, NUTRIENTS, V9, DOI 10.3390/nu9090981
  64. Vickers MH, 2011, WORLD J DIABETES, V2, P137, DOI [10.4239/wjd.v2.i9.37, 10.4239/wjd.v2.i9.137]
  65. Wahli W, 2012, TRENDS ENDOCRIN MET, V23, P351, DOI 10.1016/j.tem.2012.05.001
  66. Wang D, 2006, ENDOCRINOLOGY, V147, P943, DOI [10.1210/en.2005-0570, 10.1210/en.2006-0138]
  67. Wang SY, 2012, CELL METAB, V16, P473, DOI 10.1016/j.cmet.2012.09.003
  68. Wang Y, 2006, J LIPID RES, V47, P2028, DOI 10.1194/jlr.M600177-JLR200
  69. Wang Z, 2018, EUR J CLIN NUTR
  70. Wei MC, 2001, SCIENCE, V292, P727, DOI 10.1126/science.1059108
  71. Willy JA, 2015, MOL BIOL CELL, V26, P2190, DOI 10.1091/mbc.E15-01-0036
  72. Younossi ZM, 2016, HEPATOLOGY, V64, P73, DOI 10.1002/hep.28431
  73. Zhang C, 2012, TOXICOL LETT, V212, P229, DOI 10.1016/j.toxlet.2012.06.002
  74. Zhang LC, 2016, DIGEST LIVER DIS, V48, P709, DOI 10.1016/j.dld.2016.03.016
  75. Zhang YKJ, 2010, TOXICOL APPL PHARM, V245, P326, DOI 10.1016/j.taap.2010.03.016
  76. Zong WX, 2003, J CELL BIOL, V162, P59, DOI 10.1083/jcb.200302084