Computed tomography angiography accuracy in brain death diagnosis

Nenhuma Miniatura disponível
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER ASSOC NEUROLOGICAL SURGEONS
Citação
JOURNAL OF NEUROSURGERY, v.133, n.4, p.1220-1228, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVE The present study was designed to answer several concerns disclosed by systematic reviews indicating no evidence to support the use of computed tomography angiography (CTA) in the diagnosis of brain death (BD). Therefore, the aim of this study was to assess the effectiveness of CTA for the diagnosis of BD and to define the optimal tomographic criteria of intracranial circulatory arrest. METHODS A unicenter, prospective, observational case-control study was undertaken. Comatose patients (Glasgow Coma Scale score <= 5), even those presenting with the first signs of BD, were included. CTA scanning of arterial and venous vasculature and transcranial Doppler (TCD) were performed. A neurological determination of BD and consequently determination of case (BD group) or control (no-BD group) was conducted. All personnel involved with assessing patients were blinded to further tests results. Accuracy of BD diagnosis determined by using CTA was calculated based on the criteria of bilateral absence of visualization of the internal cerebral veins and the distal middle cerebral arteries, the 4-point score (4PS), and an exclusive criterion of absence of deep brain venous drainage as indicated by the absence of deep venous opacification on CTA, the venous score (VS), which considers only the internal cerebral veins bilaterally. RESULTS A total of 106 patients were enrolled in this study; 52 patients did not have BD, and none of these patients had circulatory arrest observed by CTA or TCD (100% specificity). Of the 54 patients with a clinical diagnosis of BD, 33 met the 4PS (61.1% sensitivity), whereas 47 met the VS (87% sensitivity). The accuracy of CTA was time related, with greater accuracy when scanning was performed less than 12 hours prior to the neurological assessment, reaching 95.5% sensitivity with the VS. CONCLUSIONS CTA can reliably support a diagnosis of BD. The criterion of the absence of deep venous opacification, which can be assessed by use of the VS criteria investigated in this study, can confirm the occurrence of cerebral circulatory arrest.
Palavras-chave
brain death, computed tomography angiography, transcranial Doppler
Referências
  1. Alexandrov AV, 2012, J NEUROIMAGING, V22, P215, DOI 10.1111/j.1552-6569.2010.00523.x
  2. Bohatyrewicz R, 2010, TRANSPL P, V42, P3941, DOI 10.1016/j.transproceed.2010.09.143
  3. BRADAC GB, 1974, NEURORADIOLOGY, V7, P25, DOI 10.1007/BF00344671
  4. Brasil S, 2018, J NEUROSURG, V128, P653, DOI 10.3171/2017.6.JNS171335
  5. Brasil S, 2016, J NEURORADIOLOGY, V43, P133, DOI 10.1016/j.neurad.2015.07.006
  6. Braun M, 1997, NEURORADIOLOGY, V39, P400, DOI 10.1007/s002340050432
  7. Buderer NMF, 1996, ACAD EMERG MED, V3, P895, DOI 10.1111/j.1553-2712.1996.tb03538.x
  8. Bustos JL, 2006, TRANSPLANT P, V38, P3697, DOI 10.1016/j.transproceed.2006.10.046
  9. Chakraborty S, 2017, CAN ASSOC RADIOL J, V68, P224, DOI 10.1016/j.carj.2016.12.002
  10. Chang JJ, 2016, AM J NEURORADIOL, V37, P408, DOI 10.3174/ajnr.A4548
  11. Citerio G, 2015, SEMIN NEUROL, V35, P139, DOI 10.1055/s-0035-1547533
  12. Drake M, 2017, SURG CLIN N AM, V97, P1255, DOI 10.1016/j.suc.2017.07.001
  13. Dupas B, 1998, AM J NEURORADIOL, V19, P641
  14. de Oliveira MRF, 2011, REV SAUDE PUBL, V45, P416, DOI 10.1590/s0034-89102011000200021
  15. Frampas E, 2009, AM J NEURORADIOL, V30, P1566, DOI 10.3174/ajnr.A1614
  16. Garrett MP, 2018, J NEUROSURG, V128, P639, DOI 10.3171/2016.10.JNS161042
  17. Greer DM, 2018, J NEUROSURG, V128, P650, DOI 10.3171/2017.4.JNS17824
  18. Kerhuel L, 2016, MINERVA ANESTESIOL, V82, P1180
  19. Knight Patrick H, 2015, Int J Crit Illn Inj Sci, V5, P256, DOI 10.4103/2229-5151.170840
  20. Kramer AH, 2015, SEMIN NEUROL, V35, P125, DOI 10.1055/s-0035-1547541
  21. Kramer AH, 2014, NEUROCRIT CARE, V21, P539, DOI 10.1007/s12028-014-9997-4
  22. Leclerc X, 2006, J NEURORADIOLOGY, V33, P90, DOI 10.1016/S0150-9861(06)77237-6
  23. MacDonald D, 2018, J NEUROIMAGING, V28, P374, DOI 10.1111/jon.12516
  24. Marchand AJ, 2016, ANN INTENSIVE CARE, V6, DOI 10.1186/s13613-016-0188-7
  25. Mehta RL, 2007, CRIT CARE, V11, DOI 10.1186/cc5713
  26. Munakomi S, 2016, CHIN J TRAUMATOL, V19, P25, DOI 10.1016/j.cjtee.2015.12.005
  27. Myburgh JA, 2008, J TRAUMA, V64, P854, DOI 10.1097/TA.0b013e3180340e77
  28. Palmer S, 2005, NEUROCRIT CARE, V2, P17, DOI 10.1385/NCC:2:1:017
  29. Patil Aruna R, 2012, J Emerg Trauma Shock, V5, P372, DOI 10.4103/0974-2700.102422
  30. Perel P, 2008, BMJ-BRIT MED J, V336, P425, DOI 10.1136/bmj.39461.643438.25
  31. Rizvi T, 2018, SEMIN ULTRASOUND CT, V39, P515, DOI 10.1053/j.sult.2018.01.006
  32. Sawicki M, 2013, NEURORADIOLOGY, V55, P1061, DOI 10.1007/s00234-013-1210-5
  33. Sawicki M, 2018, MED SCI MONITOR, V24, P2777, DOI 10.12659/MSM.906304
  34. Sawicki M, 2014, NEURORADIOLOGY, V56, P609, DOI 10.1007/s00234-014-1364-9
  35. Smit EJ, 2012, RADIOLOGY, V263, P216, DOI 10.1148/radiol.11111068
  36. Societe Francaise de Neuroradiologie, 2011, J NEURORADIOLOGY, V38, P36
  37. Tache A, 2016, DIAGN INTERV IMAG, V97, P657, DOI 10.1016/j.diii.2015.06.024
  38. TAYLOR T, 2014, COCHRANE DB SYST REV, V3, P9694
  39. van Veen E, 2018, CRIT CARE, V22, DOI 10.1186/s13054-018-2241-4
  40. Vigneau C, 2006, KIDNEY INT, V70, P1149, DOI 10.1038/sj.ki.5001727
  41. Welschehold S, 2013, J TRAUMA ACUTE CARE, V74, P1279, DOI 10.1097/TA.0b013e31828c46ba
  42. Westphal Glauco Adrieno, 2016, Rev. bras. ter. intensiva, V28, P220, DOI 10.5935/0103-507X.20160049
  43. Wijdicks EFM, 2010, NEUROLOGY, V74, P1911, DOI 10.1212/WNL.0b013e3181e242a8
  44. Wijdicks EFM, 2002, NEUROLOGY, V58, P20, DOI 10.1212/WNL.58.1.20