Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure

Nenhuma Miniatura disponível
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
WANG, Heming
NOORDAM, Raymond
CADE, Brian E.
SCHWANDER, Karen
WINKLER, Thomas W.
LEE, Jiwon
SUNG, Yun Ju
BENTLEY, Amy R.
MANNING, Alisa K.
ASCHARD, Hugues
Citação
MOLECULAR PSYCHIATRY, v.26, n.11, p.6293-6304, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P-joint < 5 x 10(-8)), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P-int < 5 x 10(-8)). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P-int = 2 x 10(-6)). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P-int < 10(-3)). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
Palavras-chave
Referências
  1. Adeva-Andany MM, 2016, BIOSCIENCE REP, V36, DOI 10.1042/BSR20160385
  2. Andersen JL, 2014, ACTA CRYSTALLOGR D, V70, P451, DOI 10.1107/S1399004713030149
  3. Ardlie KG, 2015, SCIENCE, V348, P648, DOI 10.1126/science.1262110
  4. Aulchenko YS, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-134
  5. Barfield R, 2019, SLEEP, V42, DOI 10.1093/sleep/zsz101
  6. Baron KG, 2014, INT REV PSYCHIATR, V26, P139, DOI 10.3109/09540261.2014.911149
  7. Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI 10.1161/CIR.0000000000000659
  8. Berry JD, 2012, NEW ENGL J MED, V366, P321, DOI 10.1056/NEJMoa1012848
  9. Boyle AP, 2012, GENOME RES, V22, P1790, DOI 10.1101/gr.137323.112
  10. Cascone T, 2018, CELL METAB, V27, P977, DOI 10.1016/j.cmet.2018.02.024
  11. Chambers BE, 2020, DEVELOPMENT, V147, DOI 10.1242/dev.191973
  12. Chang CC, 2015, GIGASCIENCE, V4, DOI 10.1186/s13742-015-0047-8
  13. Comuzzie AG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051954
  14. Cooper RS, 2002, HYPERTENSION, V40, P629, DOI 10.1161/01.HYP.0000035708.02789.39
  15. Cotto Kelsy C, 2018, Nucleic Acids Res, V46, pD1068, DOI 10.1093/nar/gkx1143
  16. Dabertrand F, 2013, MICROCIRCULATION, V20, P307, DOI 10.1111/micc.12027
  17. Dashti HS, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08917-4
  18. Delto CF, 2015, STRUCTURE, V23, P364, DOI 10.1016/j.str.2014.11.016
  19. Douma LG, 2018, FREE RADICAL BIO MED, V119, P108, DOI 10.1016/j.freeradbiomed.2017.11.024
  20. Eder P, 2007, CARDIOVASC RES, V73, P111, DOI 10.1016/j.cardiores.2006.10.016
  21. Ehret GB, 2016, NAT GENET, V48, P1171, DOI 10.1038/ng.3667
  22. Ehret GB, 2011, NATURE, V478, P103, DOI 10.1038/nature10405
  23. Evangelou E, 2018, NAT GENET, V50, P1412, DOI 10.1038/s41588-018-0205-x
  24. Franceschini N, 2013, AM J HUM GENET, V93, P545, DOI 10.1016/j.ajhg.2013.07.010
  25. Gangwisch JE, 2014, AM J HYPERTENS, V27, P1235, DOI 10.1093/ajh/hpu071
  26. Giri A, 2019, NAT GENET, V51, P51, DOI 10.1038/s41588-018-0303-9
  27. Grandner MA, 2015, OBESITY, V23, P2491, DOI 10.1002/oby.21247
  28. Hale L, 2007, SLEEP, V30, P1096, DOI 10.1093/sleep/30.9.1096
  29. Hamosh A, 2005, NUCLEIC ACIDS RES, V33, pD514
  30. Heisler FF, 2011, NEURON, V70, P66, DOI 10.1016/j.neuron.2011.03.008
  31. Hoffmann TJ, 2017, NAT GENET, V49, P54, DOI 10.1038/ng.3715
  32. Jackson CL, 2018, SLEEP, V41, DOI 10.1093/sleep/zsy057
  33. Jones SE, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-018-08259-7
  34. Kashef F, 2012, J BIOL CHEM, V287, P30268, DOI 10.1074/jbc.M112.368415
  35. Lambert JC, 2013, MOL PSYCHIATR, V18, P461, DOI 10.1038/mp.2012.14
  36. Laville V, 2018, BIOINFORMATICS, V34, P3412, DOI 10.1093/bioinformatics/bty379
  37. Levy D, 2000, HYPERTENSION, V36, P477, DOI 10.1161/01.HYP.36.4.477
  38. Levy D, 2009, NAT GENET, V41, P677, DOI 10.1038/ng.384
  39. Liang JJ, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006728
  40. Lindhorst Jane, 2007, Cardiovasc J Afr, V18, P241
  41. Liu CY, 2016, NAT GENET, V48, P1162, DOI 10.1038/ng.3660
  42. Manning AK, 2011, GENET EPIDEMIOL, V35, P11, DOI 10.1002/gepi.20546
  43. Martins D, 2003, CELL MOL BIOL, V49, P1305
  44. Medzikovic L, 2019, TRENDS CARDIOVAS MED, V29, P429, DOI 10.1016/j.tcm.2018.11.015
  45. Newton-Cheh C, 2009, NAT GENET, V41, P666, DOI 10.1038/ng.361
  46. Nikolaeva S, 2012, J AM SOC NEPHROL, V23, P1019, DOI 10.1681/ASN.2011080842
  47. Noordam R, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12958-0
  48. Nunes J, 2008, J NATL MED ASSOC, V100, P317, DOI 10.1016/S0027-9684(15)31244-X
  49. Ogawa Y, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21130-5
  50. Paillasse MR, 2015, MED HYPOTHESES, V84, P135, DOI 10.1016/j.mehy.2014.12.003
  51. Pickrell JK, 2016, NAT GENET, V48, P709, DOI 10.1038/ng.3570
  52. Ramos EM, 2014, EUR J HUM GENET, V22, P144, DOI 10.1038/ejhg.2013.96
  53. Rao DC, 2017, CIRC-CARDIOVASC GENE, V10, DOI 10.1161/CIRCGENETICS.116.001649
  54. Ripke S, 2014, NATURE, V511, P421, DOI 10.1038/nature13595
  55. Sandhu MS, 2008, LANCET, V371, P483, DOI 10.1016/S0140-6736(08)60208-1
  56. Sanuki R, 2010, FEBS LETT, V584, P753, DOI 10.1016/j.febslet.2009.12.030
  57. Segovia J, 2014, MINI-REV MED CHEM, V14, P1139
  58. Slowikowski K, 2014, BIOINFORMATICS, V30, P2496, DOI 10.1093/bioinformatics/btu326
  59. Sung YJ, 2018, AM J HUM GENET, V102, P375, DOI 10.1016/j.ajhg.2018.01.015
  60. Surendran P, 2016, NAT GENET, V48, P1151, DOI 10.1038/ng.3654
  61. Teng XC, 2019, CNS NEUROSCI THER, V25, P887, DOI 10.1111/cns.13156
  62. Vicario N, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01060
  63. Wang QJ, 2012, HYPERTENS RES, V35, P1012, DOI 10.1038/hr.2012.91
  64. Ward LD, 2012, NUCLEIC ACIDS RES, V40, pD930, DOI 10.1093/nar/gkr917
  65. Warren HR, 2017, NAT GENET, V49, P403, DOI [10.1038/ng.3768, 10.1038/ng1017-1558a]
  66. Watanabe K, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01261-5
  67. Watson NF, 2015, SLEEP, V38, P843, DOI 10.5665/sleep.4716
  68. Willer Cristen J, 2013, Nat Genet, V45, P1274, DOI 10.1038/ng.2797
  69. Willer CJ, 2009, NAT GENET, V41, P25, DOI 10.1038/ng.287
  70. Winkler TW, 2014, NAT PROTOC, V9, P1192, DOI 10.1038/nprot.2014.071
  71. Xi B, 2014, SLEEP MED REV, V18, P293, DOI 10.1016/j.smrv.2013.06.001
  72. Zarco N, 2013, J HISTOCHEM CYTOCHEM, V61, P731, DOI 10.1369/0022155413498088
  73. Zeileis A, 2006, J STAT SOFTW, V16
  74. Zheng JS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077442
  75. Zhu XF, 2015, AM J HUM GENET, V96, P21, DOI 10.1016/j.ajhg.2014.11.011