High-volume endurance exercise training stimulates hematopoiesis by increasing ACE NH2-terminal activity

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
PORTLAND PRESS LTD
Autores
MAGALHAES, Flavio de Castro
FERNANDES, Tiago
BASSANEZE, Vinicius
MATTOS, Katt Coelho
SCHETTERT, Isolmar
NAVA, Roberto
BARAUNA, Valerio Garrone
OLIVEIRA, Edilamar Menezes de
Citação
CLINICAL SCIENCE, v.135, n.20, p.2377-2391, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
One of the health benefits of endurance exercise training (ET) is the stimulation of hematopoiesis. However, the mechanisms underlying ET-induced hematopoietic adaptations are understudied. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits proliferation of early hematopoietic progenitor cells. The angiotensin I-converting enzyme (ACE) NH2-terminal promotes hematopoiesis by inhibiting the anti-hematopoietic effect of Ac-SDKP. Here we demonstrate for the first time the role of ACE NH2-terminal in ET-induced hematopoietic adaptations. Wistar rats were subjected to 10 weeks of moderate-(T1) and high-(T2) volume swimming-training. Although both protocols induced classical ET-associated adaptations, only T2 increased plasma ACE NH2-domain activity (by 40%, P=0.0003) and reduced Ac-SDKP levels (by 50%, P<0.0001). T2 increased the number of hematopoietic stem cells (HSCs; similar to 200%, P=0.0008), early erythroid progenitor colonies (similar to 300%, P<0.0001) and reticulocytes (similar to 500%, P=0.0007), and reduced erythrocyte lifespan (similar to 50%, P=0.022). Following, Wistar rats were subjected to T2 or T2 combined with ACE NH2-terminal inhibition (captopril (Cap) treatment: 10 mg.kg(-1).day(-1)). T2 combined with ACE NH2-terminal inhibition prevented Ac-SDKP decrease and attenuated ET-induced hematopoietic adaptations. Altogether, our findings show that ET-induced hematopoiesis was at least partially associated with increased ACE NH2-terminal activity and reduction in the hematopoietic inhibitor Ac-SDKP.
Palavras-chave
Referências
  1. Alves CR, 2018, J RENIN-ANGIO-ALDO S, V19, DOI 10.1177/1470320318761725
  2. Alves MF, 2005, BRAZ J MED BIOL RES, V38, P861, DOI 10.1590/S0100-879X2005000600007
  3. Audran M, 1999, MED SCI SPORT EXER, V31, P639, DOI 10.1097/00005768-199905000-00003
  4. BAKER MA, 1964, J APPL PHYSIOL, V19, P1215, DOI 10.1152/jappl.1964.19.6.1215
  5. BONNET D, 1993, BLOOD, V82, P3307
  6. BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  7. Brocklebank AM, 2001, CYTOMETRY, V46, P254, DOI 10.1002/cyto.1136
  8. Carmona AK, 2006, NAT PROTOC, V1, P1971, DOI 10.1038/nprot.2006.306
  9. Chisi JE, 1999, STEM CELLS, V17, P339, DOI 10.1002/stem.170339
  10. Costa MFM, 2011, EQUINE VET J, V43, P466, DOI 10.1111/j.2042-3306.2010.00320.x
  11. Da Silva ND, 2012, MED SCI SPORT EXER, V44, P1453, DOI 10.1249/MSS.0b013e31824e8a36
  12. Magalhaes FD, 2020, APPL PHYSIOL NUTR ME, V45, P101, DOI 10.1139/apnm-2019-0041
  13. De Lisio M, 2012, J APPL PHYSIOL, V113, P1576, DOI 10.1152/japplphysiol.00717.2012
  14. Djukanovic R, 2002, EUR RESPIR J, V20, p1S, DOI 10.1183/09031936.02.00000102
  15. Fernandes T, 2011, HYPERTENSION, V58, P182, DOI 10.1161/HYPERTENSIONAHA.110.168252
  16. Gajkowska A, 2006, FOLIA HISTOCHEM CYTO, V44, P53
  17. Harris E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108720
  18. HASIBEDER W, 1987, INT J SPORTS MED, V8, P105, DOI 10.1055/s-2008-1025650
  19. Ikeda N, 2008, CIRC J, V72, P897, DOI 10.1253/circj.72.897
  20. Jarajapu YPR, 2021, MOL PHARMACOL, V99, P29, DOI 10.1124/mol.119.117580
  21. JONES NCH, 1962, P ROY SOC MED, V55, P139, DOI 10.1177/003591576205500211
  22. Junot C, 1999, J PHARMACOL EXP THER, V291, P982
  23. Lemieux C, 2009, INT J CARDIOL, V136, P200, DOI 10.1016/j.ijcard.2008.04.054
  24. LORD BI, 1972, BLOOD-J HEMATOL, V40, P390, DOI 10.1182/blood.V40.3.390.390
  25. Marycz K, 2016, STEM CELLS INT, V2016, DOI 10.1155/2016/5756901
  26. Michaud A, 1997, MOL PHARMACOL, V51, P1070, DOI 10.1124/mol.51.6.1070
  27. MIGLIACCIO A R, 1990, Biotherapy (Tokyo), V2, P299, DOI 10.1007/BF02170079
  28. Montero D, 2019, COMPR PHYSIOL, V9, P149, DOI 10.1002/cphy.c180004
  29. Montero D, 2017, AM J PHYSIOL-REG I, V312, pR894, DOI 10.1152/ajpregu.00012.2017
  30. Montero D, 2015, J PHYSIOL-LONDON, V593, P4677, DOI 10.1113/JP270250
  31. Nino O, 2015, INT J SPORTS MED, V36, P292, DOI 10.1055/s-0034-1394394
  32. Nunes-Silva A, 2017, PROTEIN PEPTIDE LETT, V24, P809, DOI 10.2174/0929866524666170728151401
  33. Oliveira EM, 2009, J RENIN-ANGIO-ALDO S, V10, P15, DOI 10.1177/1470320309102304
  34. Poole DC, 2020, AM J PHYSIOL-HEART C, V318, pH1100, DOI 10.1152/ajpheart.00697.2019
  35. Soci UPR, 2016, CLIN SCI, V130, P2005, DOI 10.1042/CS20160480
  36. ROBERTSON JD, 1988, EUR J APPL PHYSIOL O, V57, P264, DOI 10.1007/BF00640674
  37. Costa JSR, 2021, LIFE SCI, V278, DOI 10.1016/j.lfs.2021.119639
  38. ROUSSEAU A, 1995, J BIOL CHEM, V270, P3656, DOI 10.1074/jbc.270.8.3656
  39. SCHMIDT W, 1989, EUR J APPL PHYSIOL O, V58, P453, DOI 10.1007/BF02330696
  40. SCHMIDT W, 1988, EUR J APPL PHYSIOL O, V57, P490, DOI 10.1007/BF00417998
  41. Soci UPR, 2011, PHYSIOL GENOMICS, V43, P665, DOI 10.1152/physiolgenomics.00145.2010
  42. Spodaryk K, 2002, PHYSIOL BEHAV, V75, P201, DOI 10.1016/S0031-9384(01)00640-0
  43. SRERE PAUL A., 1968, P11
  44. Yoshimura H, 1970, Nutr Rev, V28, P251, DOI 10.1111/j.1753-4887.1970.tb06150.x
  45. Yusof A, 2007, J APPL PHYSIOL, V102, P582, DOI 10.1152/japplphysiol.00580.2006
  46. ZUCALI JR, 1987, BLOOD, V69, P33