Proteomics of high-density lipoprotein subfractions and subclinical atherosclerosis in type 1 diabetes mellitus: a case-control study

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SILVA, Amanda R. M.
MELLO, Gabriela B. B.
SANTOS-BEZERRA, Daniele P. P.
RONSEIN, Graziella E. E.
Citação
DIABETOLOGY & METABOLIC SYNDROME, v.15, n.1, article ID 42, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundSubclinical atherosclerosis is frequently observed in type 1 diabetes (T1D) although the mechanisms and markers involved in the evolution to established cardiovascular disease are not well known. High-density lipoprotein cholesterol in T1D is normal or even high, and changes in its functionality and proteomics are considered. Our aim was to evaluate the proteomics of HDL subfractions in T1D and control subjects and its association with clinical variables, subclinical atherosclerosis markers and HDL functionality.MethodsA total of 50 individuals with T1D and 30 matched controls were included. Carotid-femoral pulse wave velocity (PWV), flow-mediated vasodilation (FMD), cardiovascular autonomic neuropathy (CAN), and ten-year cardiovascular risk (ASCVDR) were determined. Proteomics (parallel reaction monitoring) was determined in isolated HDL2 and HDL3 that were also utilized to measure cholesterol efflux from macrophages.ResultsAmong 45 quantified proteins, 13 in HDL2 and 33 in HDL3 were differentially expressed in T1D and control subjects. Six proteins related to lipid metabolism, one to inflammatory acute phase, one to complement system and one to antioxidant response were more abundant in HDL2, while 14 lipid metabolism, three acute-phase, three antioxidants and one transport in HDL3 of T1D subjects. Three proteins (lipid metabolism, transport, and unknown function) were more abundant in HDL2; and ten (lipid metabolism, transport, protease inhibition), more abundant in HDL3 of controls. Individuals with T1D had higher PWV and ten-year ASCVDR, and lower FMD, Cholesterol efflux from macrophages was similar between T1D and controls. Proteins in HDL2 and HDL3, especially related to lipid metabolism, correlated with PWV, CAN, cholesterol efflux, HDLc, hypertension, glycemic control, ten-year ASCVDR, and statins use.ConclusionHDL proteomics can be predictive of subclinical atherosclerosis in type 1 diabetes. Proteins that are not involved in reverse cholesterol transport may be associated with the protective role of HDL.
Palavras-chave
Type 1 diabetes mellitus, Cardiovascular disease, HDL, Proteomics, Vascular function
Referências
  1. Admoni S, 2017, THESIS U SAO PAULO, DOI [10.11606/T.5.2017.tde-25082017-075846, DOI 10.11606/T.5.2017.TDE-25082017-075846]
  2. Admoni SN, 2019, DIABETES VASC DIS RE, V16, P297, DOI 10.1177/1479164118820641
  3. Amer Diabet Assoc, 2021, DIABETES CARE, V44, pS15, DOI 10.2337/dc21-S002
  4. Bojanin D, 2019, ATHEROSCLEROSIS, V280, P14, DOI 10.1016/j.atherosclerosis.2018.11.020
  5. Chang CT, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/164846
  6. Chang CK, 2001, ACTA DIABETOL, V38, P37, DOI 10.1007/s005920170027
  7. Chapman MJ, 2022, CURR OPIN ENDOCRINOL, V29, P112, DOI 10.1097/MED.0000000000000705
  8. ClinRisk, 2018, QRISK3
  9. Corretti MC, 2002, J AM COLL CARDIOL, V39, P257, DOI 10.1016/S0735-1097(01)01746-6
  10. Danese Elisa, 2015, J Diabetes Sci Technol, V9, P169, DOI 10.1177/1932296814567227
  11. de Oliveira VD, 2018, DIABETES METAB SYNDR, V11, P289, DOI 10.2147/DMSO.S162008
  12. Denimal D, 2022, CARDIOVASC DIABETOL, V21, DOI 10.1186/s12933-022-01591-9
  13. Drager LF, 2007, AM J RESP CRIT CARE, V176, P706, DOI 10.1164/rccm.200703-500OC
  14. ECKEL RH, 1981, DIABETES, V30, P132, DOI 10.2337/diabetes.30.2.132
  15. ENGLEN MD, 1995, J IMMUNOL METHODS, V184, P281, DOI 10.1016/0022-1759(95)00136-X
  16. Feitosa ACR, 2013, LIPIDS HEALTH DIS, V12, DOI 10.1186/1476-511X-12-15
  17. Femlak M, 2017, LIPIDS HEALTH DIS, V16, DOI 10.1186/s12944-017-0594-3
  18. Ganjali S, 2017, ATHEROSCLEROSIS, V267, P99, DOI 10.1016/j.atherosclerosis.2017.10.018
  19. Gourgari E, 2019, CARDIOVASC DIABETOL, V18, DOI 10.1186/s12933-019-0846-9
  20. Jenkins A, 2019, CARDIOVASC ENDOCR ME, V8, P14, DOI 10.1097/XCE.0000000000000169
  21. Laurent S, 2006, EUR HEART J, V27, P2588, DOI 10.1093/eurheartj/ehl254
  22. Levey AS, 2009, ANN INTERN MED, V150, P604, DOI 10.7326/0003-4819-150-9-200905050-00006
  23. Liatis S, 2011, EXP DIABETES RES, DOI 10.1155/2011/957901
  24. Libby P, 2005, CIRCULATION, V111, P3489, DOI 10.1161/CIRCULATIONAHA.104.529651
  25. Lind M, 2014, NEW ENGL J MED, V371, P1972, DOI 10.1056/NEJMoa1408214
  26. Llaurado G, 2012, DIABETES CARE, V35, P1083, DOI 10.2337/dc11-1475
  27. Machado AP, 2006, INT J BIOCHEM CELL B, V38, P392, DOI 10.1016/j.biocel.2005.09.016
  28. MacLean B, 2010, BIOINFORMATICS, V26, P966, DOI 10.1093/bioinformatics/btq054
  29. Manjunatha S, 2016, METABOLISM, V65, P1421, DOI 10.1016/j.metabol.2016.06.008
  30. Martin SS, 2013, JAMA-J AM MED ASSOC, V310, P2061, DOI 10.1001/jama.2013.280532
  31. Prenner SB, 2015, ATHEROSCLEROSIS, V238, P370, DOI 10.1016/j.atherosclerosis.2014.12.023
  32. REDGRAVE TG, 1975, ANAL BIOCHEM, V65, P42, DOI 10.1016/0003-2697(75)90488-1
  33. Rohatgi A, 2021, CIRCULATION, V143, P2293, DOI 10.1161/CIRCULATIONAHA.120.044221
  34. Schulz R, 2015, BASIC RES CARDIOL, V110, DOI 10.1007/s00395-015-0463-z
  35. Shao BH, 2019, ARTERIOSCL THROM VAS, V39, P1483, DOI 10.1161/ATVBAHA.119.312556
  36. Shao BH, 2018, EXPERT REV PROTEOMIC, V15, P31, DOI 10.1080/14789450.2018.1402680
  37. Silva ARM, 2020, J PROTEOME RES, V19, P248, DOI 10.1021/acs.jproteome.9b00511
  38. Sivamurthy N, 2001, J VASC SURG, V34, P716, DOI 10.1067/mva.2001.116301
  39. Steno Diabetes Center, STEN T1 RISK ENG
  40. Terlemez S, 2016, J DIABETES COMPLICAT, V30, P864, DOI 10.1016/j.jdiacomp.2016.03.012
  41. Tesfaye S, 2010, DIABETES CARE, V33, P2285, DOI 10.2337/dc10-1303
  42. The Davidson/ Shah Lab, HDL PROT WATCH
  43. Toyoshima MTK., 2021, MASS SPECTROM INTERA, DOI [10.25345/C5MP1C, DOI 10.25345/C5MP1C]
  44. Vaisar T, 2020, DIABETES CARE, V43, P178, DOI 10.2337/dc19-0772
  45. Vaisar T, 2015, J LIPID RES, V56, P1519, DOI 10.1194/jlr.M059089
  46. Van Bortel LM, 2012, J HYPERTENS, V30, P445, DOI 10.1097/HJH.0b013e32834fa8b0
  47. Verges B, 2020, DIABETES METAB, V46, P442, DOI 10.1016/j.diabet.2020.09.001
  48. Vinik AI, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00591
  49. von Elm E, 2007, ANN INTERN MED, V147, P573, DOI 10.7326/0003-4819-147-8-200710160-00010
  50. Yassine HN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115320
  51. Zhou LY, 2015, MOL MED REP, V12, P4015, DOI 10.3892/mmr.2015.3930