A Novel Highly Divergent Strain of Cell Fusing Agent Virus (CFAV) in Mosquitoes from the Brazilian Amazon Region

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
MONTEIRO, Fred Julio Costa
REGO, Marlisson Octavio da Silva
RIBEIRO, Edcelha Soares D'Athaide
RIBEIRO, Geovani de Oliveira
MARINHO, Robson dos Santos Souza
KOMNINAKIS, Shirley Vasconcelos
DENG, Xutao
Citação
VIRUSES-BASEL, v.10, n.12, article ID 666, 12p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Classical insect-specific flaviviruses (cISFs) have been widely detected in different countries in the last decades. Here, we characterize the near full-length genomes of two cISFs detected in mosquitoes collected in the city of Macapa, state of Amapa, Amazon region of Brazil. A total of 105 pools of female mosquitos were analyzed by next-generation sequencing (NGS). Comparative genomics and phylogenetic analysis identified three strains of cell fusing agent virus (CFAV) and two of Culex flavivirus (CxFV). All sequences were obtained from pools of Culex sp., except for one sequence of CFAV detected in a pool of Aedes aegypti. Both CxFV strains are phylogenetically related to a strain isolated in 2012 in the Southeast region of Brazil. The CFAV strains are the first of this species to be identified in Brazil and one of them is highly divergent from other strains of CFAV that have been detected worldwide. In conclusion, CFAV and CxFV, circulate in mosquitoes in Brazil. One strain of CFAV is highly divergent from others previously described, suggesting that a novel strain of CFAV is present in this region.
Palavras-chave
cell fusing agent virus, Culex flavivirus, flavivirus, Culex sp, Aedes aegypti, mosquitoes, Amazon region
Referências
  1. An Shu-yi, 2012, Chinese Journal of Virology, V28, P511
  2. Azevedo Filho W.S., 2005, COLLECTION TECHNIQUE
  3. Bittar C, 2016, VIROL J, V13, DOI 10.1186/s12985-016-0614-3
  4. Blitvich BJ, 2015, VIRUSES-BASEL, V7, P1927, DOI 10.3390/v7041927
  5. Blitvich BJ, 2009, J MED ENTOMOL, V46, P934, DOI 10.1603/033.046.0428
  6. Bolling BG, 2011, AM J TROP MED HYG, V85, P169, DOI 10.4269/ajtmh.2011.10-0474
  7. Calisher CH, 2018, ANNU REV ENTOMOL, V63, P87, DOI 10.1146/annurev-ento-020117-043033
  8. CAMMISAPARKS H, 1992, VIROLOGY, V189, P511, DOI 10.1016/0042-6822(92)90575-A
  9. Chen YY, 2013, COMP IMMUNOL MICROB, V36, P387, DOI 10.1016/j.cimid.2013.02.001
  10. Consoli R. A. G. B., 1994, PRINCIPAIS MOSQUITOS
  11. Cook S, 2006, J GEN VIROL, V87, P735, DOI 10.1099/vir.0.81475-0
  12. Cook S, 2009, J GEN VIROL, V90, P2669, DOI 10.1099/vir.0.014183-0
  13. Crabtree MB, 2003, ARCH VIROL, V148, P1095, DOI 10.1007/s00705-003-0019-7
  14. Crockett RK, 2012, J MED ENTOMOL, V49, P165, DOI 10.1603/ME11080
  15. Cywinska A, 2006, MED VET ENTOMOL, V20, P413, DOI 10.1111/j.1365-2915.2006.00653.x
  16. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  17. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  18. Depoux A, 2018, PUBLIC HEALTH REV, V39, DOI 10.1186/s40985-018-0087-6
  19. Espinoza-Gomez F, 2011, ARCH VIROL, V156, P1263, DOI 10.1007/s00705-011-0967-2
  20. Fang Y, 2018, INFECT DIS POVERTY, V7, DOI 10.1186/s40249-018-0457-9
  21. Farfan-Ale JA, 2010, VECTOR-BORNE ZOONOT, V10, P777, DOI 10.1089/vbz.2009.0196
  22. Farfan-Ale JA, 2009, AM J TROP MED HYG, V80, P85, DOI 10.4269/ajtmh.2009.80.85
  23. Fernandes LN, 2016, ACTA TROP, V157, P73, DOI 10.1016/j.actatropica.2016.01.026
  24. Goenaga S, 2014, J MED ENTOMOL, V51, P900, DOI 10.1603/ME13172
  25. Goldani LZ, 2017, BRAZ J INFECT DIS, V21, P123, DOI 10.1016/j.bjid.2017.02.004
  26. Hoshino K, 2007, VIROLOGY, V359, P405, DOI 10.1016/j.virol.2006.09.039
  27. Hoshino K, 2009, VIROLOGY, V391, P119, DOI 10.1016/j.virol.2009.06.025
  28. Iwashita H, 2018, TROP MED HEALTH, V46, DOI 10.1186/s41182-018-0095-8
  29. Katoh RY, 2017, BRIEF BIOINFORM, P1, DOI [10.1093/bib/bbx108, DOI 10.1093/BIB/BBX108]
  30. Kihara Y, 2007, J VIROL METHODS, V146, P372, DOI 10.1016/j.jviromet.2007.07.008
  31. Kim DY, 2009, VIROLOGY, V386, P154, DOI 10.1016/j.virol.2008.12.034
  32. Kumar S, 2016, MOL BIOL EVOL, V33, P1870, DOI 10.1093/molbev/msw054
  33. Kyaw AK, 2018, VIRUS RES, V247, P120, DOI 10.1016/j.virusres.2018.01.007
  34. Li L, 2015, J VIROL METHODS, V213, P139, DOI 10.1016/j.jviromet.2014.12.002
  35. Machado DC, 2012, INTERVIROLOGY, V55, P475, DOI 10.1159/000337166
  36. Morales-Betoulle ME, 2008, J MED ENTOMOL, V45, P1187, DOI 10.1603/0022-2585(2008)45[1187:CFIFMI]2.0.CO;2
  37. Murugan K, 2016, PARASITOL RES, V115, P107, DOI 10.1007/s00436-015-4726-2
  38. NATAL D, 1984, REV SAUDE PUBL, V18, P418, DOI 10.1590/S0034-89101984000500013
  39. Newman CM, 2011, VECTOR-BORNE ZOONOT, V11, P1099, DOI 10.1089/vbz.2010.0144
  40. Paixao ES, 2018, BMJ GLOB HEALTH, V3, DOI 10.1136/bmjgh-2017-000530
  41. Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083
  42. Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490
  43. Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029
  44. Rossetto EV, 2017, REV INST MED TROP SP, V59, DOI [10.1590/S1678-9946201759017, 10.1590/s1678-9946201759017]
  45. Saiyasombat R, 2010, ARCH VIROL, V155, P983, DOI 10.1007/s00705-010-0665-5
  46. Sang RC, 2003, ARCH VIROL, V148, P1085, DOI 10.1007/s00705-003-0018-8
  47. STOLLAR V, 1975, VIROLOGY, V64, P367, DOI 10.1016/0042-6822(75)90113-0
  48. Wang HY, 2012, VIROL J, V9, DOI 10.1186/1743-422X-9-73
  49. Yamanaka A, 2013, INFECT GENET EVOL, V19, P188, DOI 10.1016/j.meegid.2013.07.012