Habenula activation patterns in a preclinical model of neuropathic pain accompanied by depressive-like behaviour

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
ANTUNES, Geiza Fernanda
CAMPOS, Ana Carolina Pinheiro
ASSIS, Danielle Varin de
GOUVEIA, Flavia Venetucci
SENO, Midia Dias de Jesus
PAGANO, Rosana Lima
Citação
PLOS ONE, v.17, n.7, article ID e0271295, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Pain and depression are complex disorders that frequently co-occur, resulting in diminished quality of life. The habenula is an epithalamic structure considered to play a pivotal role in the neurocircuitry of both pain and depression. The habenula can be divided into two major areas, the lateral and medial habenula, that can be further subdivided, resulting in 6 main subregions. Here, we investigated habenula activation patterns in a rat model of neuropathic pain with accompanying depressive-like behaviour. Wistar rats received active surgery for the development of neuropathic pain (chronic constriction injury of the sciatic nerve; CCI), sham surgery (surgical control), or no surgery (behavioural control). All animals were evaluated for mechanical nociceptive threshold using the paw pressure test and depressive-like behaviour using the forced swimming test, followed by evaluation of the immunoreactivity to cFos-a marker of neuronal activity-in the habenula and subregions. The Open Field Test was used to evaluate locomotor activity. Animals with peripheral neuropathy (CCI) showed decreased mechanical nociceptive threshold and increased depressive-like behaviour compared to control groups. The CCI group presented decreased cFos immunoreactivity in the total habenula, total lateral habenula and lateral habenula subregions, compared to controls. No difference was found in cFos immunoreactivity in the total medial habenula, however when evaluating the subregions of the medial habenula, we observed distinct activation patterns, with increase cFos immunoreactivity in the superior subregion and decrease in the central subregion. Taken together, our data suggest an involvement of the habenula in neuropathic pain and accompanying depressive-like behaviour.
Palavras-chave
Referências
  1. Adcock SJJ, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60260-7
  2. Agüera-Ortiz L, 2011, J AFFECT DISORDERS, V130, P106, DOI 10.1016/j.jad.2010.10.022
  3. Aizawa H, 2012, J COMP NEUROL, V520, P4051, DOI 10.1002/cne.23167
  4. Andres KH, 1999, J COMP NEUROL, V407, P130, DOI 10.1002/(SICI)1096-9861(19990428)407:1<130::AID-CNE10>3.0.CO;2-8
  5. Bair MJ, 2003, ARCH INTERN MED, V163, P2433, DOI 10.1001/archinte.163.20.2433
  6. BENNETT GJ, 1988, PAIN, V33, P87, DOI 10.1016/0304-3959(88)90209-6
  7. Brinschwitz K, 2010, NEUROSCIENCE, V168, P463, DOI 10.1016/j.neuroscience.2010.03.050
  8. BUNZOW JR, 1995, J NEUROCHEM, V64, P14
  9. Carlson J, 2001, BRAIN RES, V906, P127, DOI 10.1016/S0006-8993(01)02570-7
  10. Charan J, 2013, J PHARMACOL PHARMACO, V4, P303, DOI 10.4103/0976-500X.119726
  11. COHEN SR, 1986, NEUROSCI LETT, V70, P165
  12. COHEN SR, 1985, BRAIN RES, V359, P131, DOI 10.1016/0006-8993(85)91420-9
  13. Colloca L, 2017, NAT REV DIS PRIMERS, V3, DOI 10.1038/nrdp.2017.2
  14. CONTESTABILE A, 1987, NEUROSCIENCE, V21, P253, DOI 10.1016/0306-4522(87)90337-X
  15. DWORKIN RH, 1991, CLIN J PAIN, V7, P79, DOI 10.1097/00002508-199106000-00004
  16. Ferraro G, 1996, BRAIN RES BULL, V41, P47
  17. Gardon O, 2014, NEUROSCIENCE, V277, P595, DOI 10.1016/j.neuroscience.2014.07.053
  18. Germann J, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.730931
  19. Germann J, 2020, BIOL PSYCHIAT-COGN N, V5, P923, DOI 10.1016/j.bpsc.2020.01.004
  20. Gouveia FV, 2022, FRONT PSYCHIATRY, V13, DOI 10.3389/fpsyt.2022.817302
  21. Greicius MD, 2007, BIOL PSYCHIAT, V62, P429, DOI 10.1016/j.biopsych.2006.09.020
  22. GROENEWEGEN HJ, 1986, J COMP NEUROL, V249, P65, DOI 10.1002/cne.902490107
  23. HAMILL GS, 1984, BRAIN RES BULL, V13, P527, DOI 10.1016/0361-9230(84)90035-2
  24. Han S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01088-6
  25. Henn FA, 2012, NEUROPSYCHOPHARMACOL, V37, P307, DOI 10.1038/npp.2011.193
  26. HERKENHAM M, 1979, J COMP NEUROL, V187, P19, DOI 10.1002/cne.901870103
  27. Hikosaka O, 2008, J NEUROSCI, V28, P11825, DOI 10.1523/JNEUROSCI.3463-08.2008
  28. Hikosaka O, 2010, NAT REV NEUROSCI, V11, P503, DOI 10.1038/nrn2866
  29. HOUSER CR, 1983, BRAIN RES, V266, P97, DOI 10.1016/0006-8993(83)91312-4
  30. Kim U, 2005, J COMP NEUROL, V483, P236, DOI 10.1002/cne.20410
  31. Kobayashi Y, 2013, FRONT BEHAV NEUROSCI, V7, DOI 10.3389/fnbeh.2013.00017
  32. Lee YA, 2021, FRONT BEHAV NEUROSCI, V15, DOI 10.3389/fnbeh.2021.699691
  33. Lee YC, 2009, ARTHRITIS RES THER, V11, DOI 10.1186/ar2842
  34. Lépine JP, 2004, HUM PSYCHOPHARM CLIN, V19, pS3, DOI 10.1002/hup.618
  35. Li B, 2011, NATURE, V470, P535, DOI 10.1038/nature09742
  36. Li JC, 2016, EXP NEUROL, V284, P106, DOI 10.1016/j.expneurol.2016.08.010
  37. Li JX, 2015, BEHAV BRAIN RES, V276, P92, DOI 10.1016/j.bbr.2014.04.042
  38. Mathuru Ajay S, 2013, Front Neural Circuits, V7, P99, DOI 10.3389/fncir.2013.00099
  39. McLaughlin I, 2017, J NEUROCHEM, V142, P130, DOI 10.1111/jnc.14008
  40. Medeiros P, 2021, PAIN MED, V22, P338, DOI 10.1093/pm/pnaa206
  41. MELZACK R, 1965, SCIENCE, V150, P971, DOI 10.1126/science.150.3699.971
  42. MESZAROS J, 1985, POL J PHARMACOL PHAR, V37, P469
  43. Molas S, 2017, TRENDS PHARMACOL SCI, V38, P169, DOI 10.1016/j.tips.2016.11.001
  44. Namboodiri VMK, 2016, CURR BIOL, V26, pR873, DOI 10.1016/j.cub.2016.08.051
  45. Pagano RL, 2011, EUR J PAIN, V15, DOI 10.1016/j.ejpain.2010.08.003
  46. Paulson PE, 2007, EXP NEUROL, V208, P305, DOI 10.1016/j.expneurol.2007.09.001
  47. Paxinos G., 2006, RAT BRAIN STEREOTAXI, V6th Edn
  48. Campos ACP, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01825
  49. Plenge P, 2002, J PHARMACOL EXP THER, V302, P759, DOI 10.1124/jpet.102.033498
  50. RANDALL LO, 1957, ARCH INT PHARMACOD T, V111, P409
  51. Sartorius A, 2010, BIOL PSYCHIAT, V67, pE9, DOI 10.1016/j.biopsych.2009.08.027
  52. SASTRY BR, 1979, BRAIN RES, V164, P334, DOI 10.1016/0006-8993(79)90032-5
  53. Savitz JB, 2011, BIOL PSYCHIAT, V69, P336, DOI 10.1016/j.biopsych.2010.09.027
  54. Seno MDJ, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-31962-w
  55. Sevigny JP, 2021, FRONT BEHAV NEUROSCI, V15, DOI 10.3389/fnbeh.2021.652793
  56. Shelton L, 2012, J NEUROPHYSIOL, V107, P2633, DOI 10.1152/jn.00012.2012
  57. Shelton L, 2012, PROG NEUROBIOL, V96, P208, DOI 10.1016/j.pneurobio.2012.01.004
  58. Shumake J, 2003, BRAIN RES, V963, P274, DOI 10.1016/S0006-8993(02)04048-9
  59. Slattery DA, 2012, NAT PROTOC, V7, P1009, DOI 10.1038/nprot.2012.044
  60. Smith BH, 2012, CURR PAIN HEADACHE R, V16, P191, DOI 10.1007/s11916-012-0256-0
  61. Smith WJ, 1997, PHYSIOL BEHAV, V61, P717, DOI 10.1016/S0031-9384(96)00524-0
  62. SUFKA KJ, 1994, PAIN, V58, P355, DOI 10.1016/0304-3959(94)90130-9
  63. SUTHERLAND RJ, 1982, NEUROSCI BIOBEHAV R, V6, P1, DOI 10.1016/0149-7634(82)90003-3
  64. Vartiainen N, 2016, BRAIN, V139, P708, DOI 10.1093/brain/awv389
  65. Viswanath H, 2014, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00931
  66. VONKNORRING L, 1983, PAIN, V17, P377, DOI 10.1016/0304-3959(83)90169-0
  67. WHO, 2018, WHO 2018 MENT DIS
  68. Winter C, 2011, BEHAV BRAIN RES, V216, P463, DOI 10.1016/j.bbr.2010.07.034
  69. Xu CP, 2018, FRONT BEHAV NEUROSCI, V12, DOI 10.3389/fnbeh.2018.00238
  70. Yang LM, 2008, BEHAV BRAIN RES, V188, P84, DOI 10.1016/j.bbr.2007.10.022
  71. ZASTAWNY RL, 1994, J NEUROCHEM, V62, P2099
  72. Zhang CC, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.674962