Risk factors for bloodstream infection by multidrug-resistant organisms in critically ill patients in a reference trauma hospital

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MOSBY-ELSEVIER
Citação
AMERICAN JOURNAL OF INFECTION CONTROL, v.50, n.6, p.673-679, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Bloodstream infections (BSI) by multidrug-resistant (MDR) organisms are responsible for significant mortality in critically ill trauma patients. Our objective is to identify the risk factors for BSI by MDR agents and their resistance mechanisms in a trauma reference hospital. Methods: During 18 months, all patients admitted in our Intensive Care Unit (ICU) were enrolled in this prospective cohort. We included the first episode of BSI by carbapenem-resistant Gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococcus. Demographic and clinical data were compared among patients with and without BSI and variables with P <.05 were tested in a multivariate analysis. We performed PCR for identification of carbapenemase and SCC mec genes and Pulsed-field gel electrophoresis for clonality. Results: Out of 1,528 patients, 302 (19.8%) were trauma and 66 (4.3%) had a MDR-BSI ( 19.5% were trauma). The multivariate analysis showed that mechanical ventilation (OR3.16; 95% CI 1-8; P =.02), hemodialysis (OR3.16; 95% CI 1-5; P =.0003) and surgery (OR1.76; 95% CI 1-3; P =.04) were independent risk factors for MDR- BSI. The most frequent MDR were Klebsiella pneumoniae (n = 26) and MRSA (n = 27). Regarding K pneumoniae strains (n = 24), 20 ( 83.8%) harbored bla KPC gene and 1 bla NDM. The majority of KPC isolates belonged to a predominant clone; while the MRSA were polyclonal and SCC mec type II. Conclusions: Mechanical ventilation, surgery and hemodialysis were independent risk factors for MDR-BSI in our cohort, but trauma was not. KPC was the main mechanism of resistance among carbapenem-resistant K pneumoniae that belonged to a predominant clone which could indicate cross-transmission.
Palavras-chave
Nosocomial infection, Antimicrobial resistance, Bacteremia, Injury
Referências
  1. Arias CA, 2017, ANTIMICROB AGENTS CH, V61, DOI 10.1128/AAC.00816-17
  2. Bartolleti F, 2016, EMERG INFECT DIS, V22, P1849, DOI 10.3201/eid2210.160695
  3. Ben-David D, 2012, CLIN MICROBIOL INFEC, V18, P54, DOI 10.1111/j.1469-0691.2011.03478.x
  4. Caiaffa HH, 2013, DIAGN MICR INFEC DIS, V76, P518, DOI 10.1016/j.diagmicrobio.2013.04.024
  5. Calfee DP, 2014, INFECT CONT HOSP EP, V35, P772, DOI [10.1086/676534, 10.1017/S0899823X00193882]
  6. Centers for Disease and Control, 2013, ANTIBIOTIC RESISTANC
  7. Centers for Disease Control and Prevention (CDC), 2013, MMWR Morb Mortal Wkly Rep, V62, P165
  8. CHAMPION HR, 1989, J TRAUMA, V29, P623, DOI 10.1097/00005373-198905000-00017
  9. Cockfield JD, 2007, J MED MICROBIOL, V56, P614, DOI 10.1099/jmm.0.47074-0
  10. Djahmi N, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/305784
  11. do Carmo NV, 2015, BRAZ J INFECT DIS, V19, P675, DOI 10.1016/j.bjid.2015.08.008
  12. Gilbert LJ, 2016, DIAGN MICR INFEC DIS, V84, P358, DOI 10.1016/j.diagmicrobio.2015.12.014
  13. Gong Y L, 2019, Zhonghua Shao Shang Za Zhi, V35, P798, DOI 10.3760/cma.j.issn.1009-2587.2019.11.006
  14. Hammerum AM, 2012, INT J ANTIMICROB AG, V40, P191, DOI 10.1016/j.ijantimicag.2012.05.003
  15. HILF M, 1989, AM J MED, V87, P540, DOI 10.1016/0002-9343(89)90695-5
  16. Horan TC, 2008, AM J INFECT CONTROL, V36, P309, DOI 10.1016/j.ajic.2008.03.002
  17. Larsen MV, 2012, J CLIN MICROBIOL, V50, P1355, DOI 10.1128/JCM.06094-11
  18. Leal HF, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-019-4265-z
  19. Lohr B, 2017, MICROB DRUG RESIST, P1
  20. Maamar B, 2019, Ann Burns Fire Disasters, V32, P10
  21. Machado FR, 2017, LANCET INFECT DIS, V17, P1180, DOI 10.1016/S1473-3099(17)30322-5
  22. Magret M, 2010, J TRAUMA, V69, P849, DOI 10.1097/TA.0b013e3181e4d7be
  23. Major Jonathan Stephen, 2015, J Intensive Care Soc, V16, P193, DOI 10.1177/1751143715579076
  24. Mathlouthi N, 2016, J INFECT DEV COUNTR, V10, P718, DOI 10.3855/jidc.7426
  25. Sampaio JLM, 2016, BRAZ J MICROBIOL, V47, P31, DOI 10.1016/j.bjm.2016.10.002
  26. Mende Katrin, 2017, US Army Med Dep J, P12
  27. Metnitz PGH, 2005, INTENS CARE MED, V31, P1336, DOI 10.1007/s00134-005-2762-6
  28. Michetti CP, 2012, J TRAUMA ACUTE CARE, V72, P1165, DOI 10.1097/TA.0b013e31824d10fa
  29. MORGAN AS, 1992, J NATL MED ASSOC, V84, P1019
  30. Mouloudi E, 2010, INFECT CONT HOSP EP, V31, P1250, DOI 10.1086/657135
  31. Papia G, 1999, J TRAUMA, V47, P923, DOI 10.1097/00005373-199911000-00018
  32. Petersen-Morfin S, 2017, AM J CASE REP, V18, P805, DOI 10.12659/AJCR.903992
  33. Pirs M, 2011, EUROSURVEILLANCE, V16, P12
  34. Poirel L, 2011, DIAGN MICR INFEC DIS, V70, P119, DOI 10.1016/j.diagmicrobio.2010.12.002
  35. Reiter KC, 2010, REV SOC BRAS MED TRO, V43, P377, DOI 10.1590/S0037-86822010000400008
  36. Seymour CW, 2016, JAMA-J AM MED ASSOC, V315, P762, DOI 10.1001/jama.2016.0288
  37. Shuping LL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0188216
  38. Silva IR, 2019, MICROB DRUG RESIST, V00, P1
  39. Silveira ACO, 2015, BRAZ J INFECT DIS, V19, P384, DOI 10.1016/j.bjid.2015.04.009
  40. Smith JW, 2011, AM SURGEON, V77, P1038
  41. The Brazilian Research in Intensive Care Network (BRICNet), 2016, JAMA-J AM MED ASSOC, V315, P1480
  42. Tonacio AC, 2014, INFECTION, V42, P89, DOI 10.1007/s15010-013-0523-y
  43. Trindade PD, 2005, J CLIN MICROBIOL, V43, P3435, DOI 10.1128/JCM.43.7.3435-3437.2005
  44. Turner NA, 2019, NAT REV MICROBIOL, V17, P203, DOI 10.1038/s41579-018-0147-4
  45. Villegas MV, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154092
  46. Wayne PA, 2019, PERFORMANCE STANDARD, V29th
  47. World Health Organization, 2002, WORLD REP VIOL HLTH
  48. World Health Organization (WHO), 2014, INJ VIOL FACTS 2014
  49. Zhang KY, 2005, J CLIN MICROBIOL, V43, P5026, DOI 10.1128/JCM.43.10.5026-5033.2005