Beneficial effects of adenosine triphosphate-sensitive K+ channel opener on liver ischemia/reperfusion injury

Carregando...
Imagem de Miniatura
Citações na Scopus
17
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
BAISHIDENG PUBLISHING GROUP INC
Citação
WORLD JOURNAL OF GASTROENTEROLOGY, v.20, n.41, p.15319-15326, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AIM: To investigate the effect of diazoxide administration on liver ischemia/reperfusion injury. METHODS: Wistar male rats underwent partial liver ischemia performed by clamping the pedicle from the medium and left anterior lateral segments for 1 h under mechanical ventilation. They were divided into 3 groups: Control Group, rats submitted to liver manipulation, Saline Group, rats received saline, and Diazoxide Group, rats received intravenous injection diazoxide (3.5 mg/kg) 15 min before liver reperfusion. 4 h and 24 h after reperfusion, blood was collected for determination of aspartate transaminase (AST), alanine transaminase (ALT), tumor necrosis factor (TNF-alpha), interleukin-6 (IL-6), interleukin-10 (IL-10), nitrite/nitrate, creatinine and tumor growth factor-beta 1 (TGF-beta 1). Liver tissues were assembled for mitochondrial oxidation and phosphorylation, malondialdehyde (MDA) content, and histologic analysis. Pulmonary vascular permeability and myeloperoxidase (MPO) were also determined. RESULTS: Four hours after reperfusion the diazoxide group presented with significant reduction of AST (2009 +/- 257 U/L vs 3523 +/- 424 U/L, P = 0.005); ALT (1794 +/- 295 U/L vs 3316 +/- 413 U/L, P = 0.005); TNF-alpha (17 +/- 9 pg/mL vs 152 +/- 43 pg/mL, P = 0.013; IL-6 (62 +/- 18 pg/mL vs 281 +/- 92 pg/mL); IL-10 (40 +/- 9 pg/mL vs 78 +/- 10 pg/mL P = 0.03), and nitrite/nitrate (3.8 +/- 0.9 mu mol/L vs 10.2 +/- 2.4 mu mol/L, P = 0.025) when compared to the saline group. A significant reduction in liver mitochondrial dysfunction was observed in the diazoxide group compared to the saline group (P < 0.05). No differences in liver MDA content, serum creatinine, pulmonary vascular permeability and MPO activity were observed between groups. Twenty four hours after reperfusion the diazoxide group showed a reduction of AST (495 +/- 78 U/L vs 978 +/- 192 U/L, P = 0.032); ALT (335 +/- 59 U/L vs 742 +/- 182 U/L, P = 0.048), and TGF-beta 1 (11 +/- 1 ng/mL vs 17 +/- 0.5 ng/mL, P = 0.004) serum levels when compared to the saline group. The control group did not present alterations when compared to the diazoxide and saline groups. CONCLUSION: Diazoxide maintains liver mitochondrial function, increases liver tolerance to ischemia/reperfusion injury, and reduces the systemic inflammatory response. These effects require further evaluation for using in a clinical setting.
Palavras-chave
Liver ischemia/reperfusion, Diazoxide, K+ channel opener, Mitochondrial ATP-sensitive potassium channel, Liver mitochondria
Referências
  1. Bajgar R, 2001, J BIOL CHEM, V276, P33369, DOI 10.1074/jbc.M103320200
  2. CHANCE B, 1955, NATURE, V175, P1120, DOI 10.1038/1751120a0
  3. Coelho AMM, 1997, BRAZ J MED BIOL RES, V30, P947, DOI 10.1590/S0100-879X1997000800006
  4. Debska G, 2002, BBA-BIOENERGETICS, V1556, P97, DOI 10.1016/S0005-2728(02)00340-7
  5. Domoki F, 2004, BRAIN RES, V1019, P97, DOI 10.1016/j.brainres.2004.05.088
  6. Estabrook RW, 1967, ENZYMOLOGY, P41
  7. Facundo HTF, 2007, FREE RADICAL BIO MED, V42, P1039, DOI 10.1016/j.freeradbiomed.2007.01.001
  8. Facundo HTF, 2006, FREE RADICAL BIO MED, V40, P469, DOI 10.1016/j.freeradbiomed.2005.08.041
  9. Figueira ERR, 2010, SURGERY, V147, P415, DOI 10.1016/j.surg.2009.10.018
  10. Garlid KD, 2009, J MOL CELL CARDIOL, V46, P858, DOI 10.1016/j.yjmcc.2008.11.019
  11. GOLDBLUM SE, 1985, J APPL PHYSIOL, V59, P1978
  12. Gonzalez G, 2010, BRIT J PHARMACOL, V161, P1172, DOI 10.1111/j.1476-5381.2010.00960.x
  13. INOUE I, 1991, NATURE, V352, P244, DOI 10.1038/352244a0
  14. Iwai T, 2000, BRIT J PHARMACOL, V129, P1219, DOI 10.1038/sj.bjp.0703148
  15. JANCAR S, 1988, PROSTAGLANDINS, V35, P757, DOI 10.1016/0090-6980(88)90148-7
  16. Kicinska A., 2003, General Physiology and Biophysics, V22, P383
  17. Kume M, 1996, J LAB CLIN MED, V128, P251, DOI 10.1016/S0022-2143(96)90026-8
  18. Lenzser G, 2005, BRAIN RES, V1051, P72, DOI 10.1016/j.brainres.2005.05.064
  19. Liang BT, 1999, CIRC RES, V84, P1396
  20. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  21. Nakagawa Y, 2012, TRANSPLANTATION, V93, P1094, DOI 10.1097/TP.0b013e31824ef1d1
  22. Nishida H, 2007, J PHARMACOL SCI, V103, p102P
  23. Nishida H, 2009, J PHARMACOL SCI, V109, P341, DOI 10.1254/jphs.08R24FM
  24. Nishida H, 2010, FEBS LETT, V584, P2161, DOI 10.1016/j.febslet.2009.12.033
  25. NOMA A, 1983, NATURE, V305, P147, DOI 10.1038/305147a0
  26. Oldenburg O, 2003, J MOL CELL CARDIOL, V35, P1035, DOI 10.1016/S0022-2828(03)00151-2
  27. Peralta C, 1999, HEPATOLOGY, V30, P1481, DOI 10.1002/hep.510300622
  28. Petrowsky H, 2006, ANN SURG, V244, P921, DOI 10.1097/01.sla.0000246834.07130.5d
  29. Quireze C, 2006, J INVEST SURG, V19, P229, DOI 10.1080/08941930600778206
  30. Rahgozar M, 2003, RENAL FAILURE, V25, P885, DOI 10.1081/JDI-120026024
  31. Roseborough G, 2006, AM J PATHOL, V168, P1443, DOI 10.2353/ajpath.2006.050569
  32. Soriano FG, 2002, SHOCK, V17, P286, DOI 10.1097/00024382-200204000-00008
  33. Wakahara N, 2004, CIRC J, V68, P156, DOI 10.1253/circj.68.156
  34. Wang LX, 2006, ANN THORAC SURG, V81, P1817, DOI 10.1016/j.athoracsur.2005.11.029
  35. WARREN JS, 1990, FREE RADICAL BIO MED, V8, P163, DOI 10.1016/0891-5849(90)90089-2
  36. Yellon DM, 1998, CARDIOVASC RES, V37, P21, DOI 10.1016/S0008-6363(97)00214-9
  37. Yoshizumi T, 1998, BRIT J SURG, V85, P1636
  38. Zhang WX, 2009, HEPATOB PANCREAT DIS, V8, P586