Exome Sequencing Identifies Multiple Genetic Diagnoses in Children with Syndromic Growth Disorders

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
MOSBY-ELSEVIER
Citação
JOURNAL OF PEDIATRICS, v.265, article ID 113841, 9p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective To evaluate the presence of multiple genetic diagnoses in syndromic growth disorders. Study design We carried out a cross-sectional study to evaluate 115 patients with syndromic tall (n = 24) or short stature (n = 91) of unknown cause from a tertiary referral center for growth disorders. Exome sequencing was performed to assess germline single nucleotide, InDel, and copy number variants. All variants were classified according to ACMG/AMP guidelines. The main outcome measured was the frequency of multiple genetic diagnoses in a cohort of children with syndromic growth disorders. Results The total diagnostic yield of the cohort was 54.8% (63/115). Six patients had multiple genetic diagnoses (tall stature group = 2; short stature group = 4). The proportion of multiple diagnoses within total cases was 5.2% (6/ 115), and within solved cases was 9.5% (6/63). No characteristics were significantly more frequent when compared with patients with single or multiple genetic findings. Among patients with multiple diagnoses, 3 had syndromes with overlapping clinical features, and the others had syndromes with distinct phenotypes. Conclusion Recognition of multiple genetic diagnoses as a possibility in complex cases of syndromic growth disorders opens a new perspective on treatment and genetic counseling for affected patients, defying the medical common sense of trying to fit all findings into one diagnosis. (J Pediatr 2024;265:113841)
Palavras-chave
Referências
  1. Balci TB, 2017, CLIN GENET, V92, P281, DOI 10.1111/cge.12987
  2. Correa FA, 2017, ARCH ENDOCRIN METAB, V61, P633, DOI 10.1590/2359-3997000000311
  3. Albuquerque EVD, 2020, EUR J ENDOCRINOL, V182, P139, DOI 10.1530/EJE-19-0785
  4. de Santana LS, 2019, MOL GENET GENOM MED, V7, DOI 10.1002/mgg3.962
  5. Demidov G, 2019, bioRxiv
  6. Fan X, 2021, J GENET GENOMICS, V48, P396, DOI 10.1016/j.jgg.2021.02.008
  7. Freire BL, 2022, AM J MED GENET A, V188, P2599, DOI 10.1002/ajmg.a.62892
  8. Grunauer M, 2018, GROWTH HORM IGF RES, V38, P29, DOI 10.1016/j.ghir.2017.12.003
  9. Gurovich Y, 2019, NAT MED, V25, P60, DOI 10.1038/s41591-018-0279-0
  10. Hauer NN, 2018, GENET MED, V20, P630, DOI 10.1038/gim.2017.159
  11. Homma TK, 2019, J PEDIATR-US, V215, P192, DOI 10.1016/j.jpeds.2019.08.024
  12. Hsieh TC, 2022, NAT GENET, V54, P349, DOI 10.1038/s41588-021-01010-x
  13. Hwa V, 2021, MOL CELL ENDOCRINOL, V519, DOI 10.1016/j.mce.2020.111063
  14. Karaca E, 2018, GENET MED, V20, P1528, DOI 10.1038/gim.2018.33
  15. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  16. Klau J, 2022, EUR J HUM GENET, V30, P117, DOI 10.1038/s41431-021-00981-z
  17. Kuczmarski RJ, 2000, Vital and health statistics, series, V11
  18. Lavelle TA, 2022, GENET MED, V24, P1349, DOI 10.1016/j.gim.2022.03.005
  19. Lerario AM, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1913
  20. Lessel D, 2018, BRAIN, V141, P2299, DOI 10.1093/brain/awy173
  21. Li X, 2021, HORM RES PAEDIAT, V94, P35, DOI 10.1210/clinem/dgab863
  22. Narayanan DL, 2021, EUR J HUM GENET, V29, P1774, DOI 10.1038/s41431-021-00933-7
  23. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  24. Pejaver V, 2022, AM J HUM GENET, V109, P2163, DOI 10.1016/j.ajhg.2022.10.013
  25. Perchard R, 2023, J CLIN ENDOCR METAB, V108, P1007, DOI 10.1210/clinem/dgac637
  26. Posey JE, 2017, NEW ENGL J MED, V376, P21, DOI 10.1056/NEJMoa1516767
  27. Rausch T, 2012, BIOINFORMATICS, V28, pI333, DOI 10.1093/bioinformatics/bts378
  28. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  29. Roa-Bautista Adriel, 2022, EJIFCC, V33, P325
  30. Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754
  31. Rosina E, 2022, GENES-BASEL, V13, DOI 10.3390/genes13071275
  32. Silventoinen K, 2003, TWIN RES, V6, P399, DOI 10.1375/136905203770326402
  33. Smith ED, 2019, GENET MED, V21, P2199, DOI 10.1038/s41436-019-0477-2
  34. Vasques GA, 2018, J CLIN ENDOCR METAB, V103, P604, DOI 10.1210/jc.2017-02026
  35. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  36. Yang YP, 2014, JAMA-J AM MED ASSOC, V312, P1870, DOI 10.1001/jama.2014.14601