The effect of beta-alanine supplementation on high intensity cycling capacity in normoxia and hypoxia

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
PATEL, Kiran Akshay
SALE, Craig
JAMES, Ruth M.
Citação
JOURNAL OF SPORTS SCIENCES, v.39, n.11, p.1295-1301, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The availability of dietary beta-alanine (BA) is the limiting factor in carnosine synthesis within human muscle due to its low intramuscular concentration and substrate affinity. Carnosine can accept hydrogen ions (H+), making it an important intramuscular buffer against exercise-induced acidosis. Metabolite accumulation rate increases when exercising in hypoxic conditions, thus an increased carnosine concentration could attenuate H+ build-up when exercising in hypoxic conditions. This study examined the effects of BA supplementation on high intensity cycling capacity in normoxia and hypoxia. In a double-blind design, nineteen males were matched into a BA group (n = 10; 6.4 g center dot d(-1)) or a placebo group (PLA; n = 9) and supplemented for 28 days, carrying out two pre- and two post-supplementation cycling capacity trials at 110% of powermax, one in normoxia and one in hypoxia (15.5% O-2). Hypoxia led to a 9.1% reduction in exercise capacity, but BA supplementation had no significant effect on exercise capacity in normoxia or hypoxia (P > 0.05). Blood lactate accumulation showed a significant trial x time interaction post-supplementation (P = 0.016), although this was not significantly different between groups. BA supplementation did not increase high intensity cycling capacity in normoxia, nor did it improve cycling capacity in hypoxia even though exercise capacity was reduced under hypoxic conditions.
Palavras-chave
Exercise capacity, carnosine, hypoxia, supplementation, buffering
Referências
  1. Borg GA, 1982, MED SCI SPORT EXER, V14, pS77
  2. Burke LM, 2019, INT J SPORT NUTR EXE, V29, P73, DOI 10.1123/ijsnem.2019-0065
  3. Burtscher M, 2006, INT J SPORTS MED, V27, P629, DOI 10.1055/s-2005-872823
  4. BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4
  5. Carvalho VH, 2018, REDOX BIOL, V18, P222, DOI 10.1016/j.redox.2018.07.009
  6. Ceaser T, 2015, SPORTS MED, V45, P615, DOI 10.1007/s40279-015-0318-7
  7. Danaher J, 2014, EUR J APPL PHYSIOL, V114, P1715, DOI 10.1007/s00421-014-2895-9
  8. Dias GFD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143086
  9. Deb SK, 2018, EUR J SPORT SCI, V18, P243, DOI 10.1080/17461391.2017.1410233
  10. Deb SK, 2018, EUR J APPL PHYSIOL, V118, P607, DOI 10.1007/s00421-018-3801-7
  11. Deb SK, 2017, EUR J APPL PHYSIOL, V117, P901, DOI 10.1007/s00421-017-3574-4
  12. Debold EP, 2008, AM J PHYSIOL-CELL PH, V295, pC173, DOI 10.1152/ajpcell.00172.2008
  13. Derave W, 2007, J APPL PHYSIOL, V103, P1736, DOI 10.1152/japplphysiol.00397.2007
  14. Droppleman, 1971, MANUAL POMS
  15. Flinn S, 2014, J STRENGTH COND RES, V28, P2852, DOI 10.1519/JSC.0000000000000489
  16. Gross M, 2014, EUR J APPL PHYSIOL, V114, P221, DOI 10.1007/s00421-013-2767-8
  17. Harris RC, 2006, AMINO ACIDS, V30, P279, DOI 10.1007/s00726-006-0299-9
  18. HAUSSWIRTH C, 1995, EUR J APPL PHYSIOL, V71, P362, DOI 10.1007/BF00240418
  19. Hill CA, 2007, AMINO ACIDS, V32, P225, DOI 10.1007/s00726-006-0364-4
  20. Hobson RM, 2012, AMINO ACIDS, V43, P25, DOI 10.1007/s00726-011-1200-z
  21. HOGAN MC, 1999, J APPL PHYSL RESP EN, V86
  22. Jubrias SA, 2003, J PHYSIOL-LONDON, V553, P589, DOI 10.1113/jphysiol.2003.045872
  23. KAYSER B, 1993, J APPL PHYSL RESP EN, V75
  24. Kent-Braun JA, 2012, COMPR PHYSIOL, V2, P997, DOI 10.1002/cphy.c110029
  25. Knuth ST, 2006, J PHYSIOL-LONDON, V575, P887, DOI 10.1113/jphysiol.2006.106732
  26. Levine BD, 2008, SCAND J MED SCI SPOR, V18, P76, DOI 10.1111/j.1600-0838.2008.00835.x
  27. MILLET GP, 2010, SPORTS MED, V40
  28. Mira J, 2020, MED SCI SPORT EXER, V52, P1888, DOI 10.1249/MSS.0000000000002331
  29. PAN JW, 1991, MAGNET RESON MED, V20
  30. Rezende N.S., 2019, HUMAN SKELETAL MUSCL, DOI [10.1101/870584, DOI 10.1101/870584]
  31. Sale C, 2011, MED SCI SPORT EXER, V43, P1972, DOI 10.1249/MSS.0b013e3182188501
  32. Saunders B, 2017, MED SCI SPORT EXER, V49, P896, DOI 10.1249/MSS.0000000000001173
  33. Saunders B, 2017, BRIT J SPORT MED, V51, P658, DOI 10.1136/bjsports-2016-096396
  34. Saunders B, 2014, INT J SPORT PHYSIOL, V9, P627, DOI [10.1123/IJSPP.2013-0295, 10.1123/ijspp.2013-0295]
  35. Saunders B, 2014, INT J SPORT NUTR EXE, V24, P196, DOI 10.1123/ijsnem.2013-0102
  36. Saunders B, 2013, J SCI MED SPORT, V16, P286, DOI 10.1016/j.jsams.2012.07.004
  37. Saunders PU, 2019, INT J SPORT NUTR EXE, V29, P210, DOI 10.1123/ijsnem.2018-0256
  38. SMITH ECB, 1938, J PHYSIOL-LONDON, V92
  39. Stecker RA, 2019, J INT SOC SPORT NUTR, V16, DOI 10.1186/s12970-019-0304-9
  40. TANOKURA M, 1976, BIOPOLYMERS, V15, P393, DOI 10.1002/bip.1976.360150215
  41. Wang R, 2019, J AM COLL NUTR, V38, P149, DOI 10.1080/07315724.2018.1475269