Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review

Carregando...
Imagem de Miniatura
Citações na Scopus
50
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
HINDAWI LTD
Autores
NEIVA, Jaqueline Freitas de Oliveira
MONTEIRO, Carlos Bandeira de Mello
MAGALHAES, Fernando Henrique
Citação
BIOMED RESEARCH INTERNATIONAL, v.2019, article ID 7106951, 15p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background. Spinal cord injury (SCI) is often associated with long-term impairments related to functional limitations in the sensorimotor system. The use of virtual reality (VR) technology may lead to increased motivation and engagement, besides allowing a wide range of possible tasks/exercises to be implemented in rehabilitation programs. The present review aims to investigate the possible benefits and efficacy of VR-based rehabilitation in individuals with SCI. Methods. An electronically systematic search was performed in multiple databases (PubMed, BVS, Web of Science, Cochrane Central, and Scielo) up to May 2019. MESH terms and keywords were combined in a search strategy. Two reviewers independently selected the studies in accordance with eligibility criteria. The PEDro scale was used to score the methodological quality and risk of bias of the selected studies. Results. Twenty-five studies (including 482 participants, 47.6 +/- 9.5 years, 73% male) were selected and discussed. Overall, the studies used VR devices in different rehabilitation protocols to improve motor function, driving skills, balance, aerobic function, and pain level, as well as psychological and motivational aspects. A large amount of heterogeneity was observed as to the study design, VR protocols, and outcome measures used. Only seven studies (28%) had an excellent/good quality of evidence. However, substantial evidence for significant positive effects associated with VR therapy was found in most of the studies (88%), with no adverse events (88%) being reported. Conclusion. Although the current evidence is limited, the findings suggest that VR-based rehabilitation in subjects with SCI may lead to positive effects on aerobic function, balance, pain level, and motor function recovery besides improving psychological/motivational aspects. Further high-quality studies are needed to provide a guideline to clinical practice and to draw robust conclusions about the potential benefits of VR therapy for SCI patients. Protocol details are registered on PROSPERO (registration number: ).
Palavras-chave
Referências
  1. Dos Santos LRA, 2015, J STROKE CEREBROVASC, V24, P2298, DOI 10.1016/j.jstrokecerebrovasdis.2015.06.010
  2. An CM, 2018, J SPINAL CORD MED, V41, P223, DOI 10.1080/10790268.2017.1369217
  3. Beaton D., 2017, RECOMMENDATIONS CROS
  4. Berben L, 2012, INT J NURS STUD, V49, P1039, DOI 10.1016/j.ijnurstu.2012.01.015
  5. Botelho RV, 2014, BRAZ NEUROSURG, V33, P100
  6. Boutron I, 2007, PLOS MED, V4, P370, DOI 10.1371/journal.pmed.0040061
  7. Button KS, 2013, NAT REV NEUROSCI, V14, P365, DOI 10.1038/nrn3475
  8. Carlozzi NE, 2013, DISABIL REHABIL-ASSI, V8, P176, DOI 10.3109/17483107.2012.699990
  9. Chen CH, 2009, J SPORT REHABIL, V18, P258, DOI 10.1123/jsr.18.2.258
  10. Corbetta D, 2015, J PHYSIOTHER, V61, P117, DOI 10.1016/j.jphys.2015.05.017
  11. D'Addio G., 2014, MED MEAS APPL MEMEA, P1, DOI 10.1109/memea.2014.6860124
  12. Darekar A, 2015, J NEUROENG REHABIL, V12, DOI 10.1186/s12984-015-0035-3
  13. Dimbwadyo-Terrer I, 2016, BIOMED RES INT, DOI 10.1155/2016/6397828
  14. Dimbwadyo-Terrer I, 2016, DISABIL REHABIL-ASSI, V11, P462, DOI 10.3109/17483107.2015.1027293
  15. Dimbwadyo-Terrer I, 2013, NEUROTECHNIX: PROCEEDINGS OF THE INTERNATIONAL CONGRESS ON NEUROTECHNOLOGY, ELECTRONICS AND INFORMATICS, P81, DOI 10.5220/0004642600810088
  16. Dockx K, 2016, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010760.pub2
  17. Durlak JA, 2009, J PEDIATR PSYCHOL, V34, P917, DOI 10.1093/jpepsy/jsp004
  18. Fawcett JW, 2007, SPINAL CORD, V45, P190, DOI 10.1038/sj.sc.3102007
  19. Field-Fote EC, 2000, PHYS THER, V80, P477, DOI 10.1093/ptj/80.5.477
  20. Fizzotti G, 2015, STUD HEALTH TECHNOL, V210, P479, DOI 10.3233/978-1-61499-512-8-479
  21. Gaffurini P, 2013, EUR J PHYS REHAB MED, V49, P23
  22. Gil-Agudo A., 2012, REHABILITACION, V46, P8
  23. Hasnan N., 2013, Biomedical Engineering-Biomedizinische Technik, V58, DOI 10.1515/bmt-2013-4028
  24. Hutton B, 2015, ANN INTERN MED, V162, P777, DOI 10.7326/M14-2385
  25. Imam B, 2014, REHABIL RES PRACT, DOI 10.1155/2014/594540
  26. Joo LY, 2010, J REHABIL MED, V42, P437, DOI 10.2340/16501977-0528
  27. Jordan M, 2016, AM J PHYS MED REHAB, V95, P390, DOI 10.1097/PHM.0000000000000417
  28. Khurana M, 2017, TOP SPINAL CORD INJ, V23, P263, DOI 10.1310/sci16-00003
  29. Kirshblum SC, 2011, J SPINAL CORD MED, V34, P547, DOI 10.1179/107902611X13186000420242
  30. Kizony R, 2005, J REHABIL RES DEV, V42, P595, DOI 10.1682/JRRD.2005.01.0023
  31. Kowalczewski J, 2011, NEUROREHAB NEURAL RE, V25, P412, DOI 10.1177/1545968310394869
  32. de Araujo AVL, 2017, TRIALS, V18, DOI 10.1186/s13063-017-2280-1
  33. Lanningham-Foster L, 2009, J PEDIATR-US, V154, P819, DOI 10.1016/j.jpeds.2009.01.009
  34. Laver KE, 2011, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD008349.pub2
  35. Li Z, 2016, CLIN REHABIL, V30, P432, DOI 10.1177/0269215515593611
  36. Lohse KR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093318
  37. Luque-Moreno C, 2015, BIOMED RES INT, DOI 10.1155/2015/342529
  38. Malay S, 2012, PLAST RECONSTR SURG, V130, P959, DOI 10.1097/PRS.0b013e318262f4c8
  39. Malloy KM, 2010, CLIN PSYCHOL REV, V30, P1011, DOI 10.1016/j.cpr.2010.07.001
  40. Moher D, 2012, INT J SURG, V10, P28, DOI 10.1016/j.ijsu.2011.10.001
  41. Nardini C, 2014, ECANCERMEDICALSCIENC, V8, DOI 10.3332/ecancer.2014.387
  42. O'Connor TJ, 2000, NEUROREHAB NEURAL RE, V14, P21, DOI 10.1177/154596830001400103
  43. Pietrzak E, 2014, GAMES HEALTH J, V3, P202, DOI 10.1089/g4h.2014.0013
  44. Pozeg P, 2017, NEUROLOGY, V89, P1894, DOI 10.1212/WNL.0000000000004585
  45. Prasad S, 2018, ASIAN SPINE J, V12, P927, DOI 10.31616/asj.2018.12.5.927
  46. Ravi DK, 2017, PHYSIOTHERAPY, V103, P245, DOI 10.1016/j.physio.2016.08.004
  47. Roosink M, 2016, RESTOR NEUROL NEUROS, V34, P227, DOI 10.3233/RNN-150563
  48. Sayenko DG, 2010, SPINAL CORD, V48, P886, DOI 10.1038/sc.2010.41
  49. Shin JH, 2015, COMPUT BIOL MED, V63, P92, DOI 10.1016/j.compbiomed.2015.03.011
  50. Sin H, 2013, AM J PHYS MED REHAB, V92, P871, DOI 10.1097/PHM.0b013e3182a38e40
  51. Steeves JD, 2007, SPINAL CORD, V45, P206, DOI 10.1038/sj.sc.3102008
  52. Sung WH, 2012, J CHIN MED ASSOC, V75, P600, DOI 10.1016/j.jcma.2012.08.004
  53. Suresh K, 2011, ANN INDIAN ACAD NEUR, V14, P287, DOI 10.4103/0972-2327.91951
  54. Trincado-Alonso F, 2014, BIOMED RES INT, DOI 10.1155/2014/904985
  55. van de Ven RM, 2016, FRONT HUM NEUROSCI, V10, DOI 10.3389/fnhum.2016.00150
  56. van den Berg MEL, 2010, NEUROEPIDEMIOLOGY, V34, P184, DOI 10.1159/000279335
  57. van Dijsseldonk RB, 2018, FRONT NEUROL, V9, DOI 10.3389/fneur.2018.00963
  58. Victora CG, 2004, AM J PUBLIC HEALTH, V94, P400, DOI 10.2105/AJPH.94.3.400
  59. Villiger M, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00635
  60. Villiger M, 2015, FRONT HUM NEUROSCI, V9, DOI 10.3389/fnhum.2015.00254
  61. Villiger M, 2013, NEUROREHAB NEURAL RE, V27, P675, DOI 10.1177/1545968313490999
  62. Wall T, 2015, J SPINAL CORD MED, V38, P777, DOI 10.1179/2045772314Y.0000000296
  63. Yozbatiran N, 2016, NEUROREHABILITATION, V39, P401, DOI 10.3233/NRE-161371
  64. Zimmerli L, 2013, ARCH PHYS MED REHAB, V94, P1737, DOI 10.1016/j.apmr.2013.01.029
  65. Zorzela L, 2016, BMJ-BRIT MED J, V352, DOI 10.1136/bmj.i157