IVIg Immune Reconstitution Treatment Alleviates the State of Persistent Immune Activation and Suppressed CD4 T Cell Counts in CVID

Carregando...
Imagem de Miniatura
Citações na Scopus
44
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.8, n.10, article ID e75199, 9p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Common variable immunodeficiency (CVID) is characterized by defective B cell function, impaired antibody production, and increased susceptibility to bacterial infections. Here, we addressed the hypothesis that poor antibody-mediated immune control of infections may result in substantial perturbations in the T cell compartment. Newly diagnosed CVID patients were sampled before, and 6-12 months after, initiation of intravenous immunoglobulin (IVIg) therapy. Treatment-naive CVID patients displayed suppressed CD4 T cell counts and myeloid dendritic cell (mDC) levels, as well as high levels of immune activation in CD8 T cells, CD4 T cells, and invariant natural killer T (iNKT) cells. Expression of co-stimulatory receptors CD80 and CD83 was elevated in mDCs and correlated with T cell activation. Levels of both FoxP3+ T regulatory (Treg) cells and iNKT cells were low, whereas soluble CD14 (sCD14), indicative of monocyte activation, was elevated. Importantly, immune reconstitution treatment with IVIg partially restored the CD4 T cell and mDC compartments. Treatment furthermore reduced the levels of CD8 T cell activation and mDC activation, whereas levels of Treg cells and iNKT cells remained low. Thus, primary deficiency in humoral immunity with impaired control of microbial infections is associated with significant pathological changes in cell-mediated immunity. Furthermore, therapeutic enhancement of humoral immunity with IVIg infusions alleviates several of these defects, indicating a relationship between poor antibody-mediated immune control of infections and the occurrence of abnormalities in the T cell and mDC compartments. These findings help our understanding of the immunopathogenesis of primary immunodeficiency, as well as acquired immunodeficiency caused by HIV-1 infection.
Palavras-chave
Referências
  1. Aukrust P, 1997, J INFECT DIS, V176, P913
  2. Ballow M, 2011, CLIN IMMUNOL, V139, P208, DOI 10.1016/j.clim.2011.02.006
  3. Barbosa RR, 2012, CLIN EXP IMMUNOL, V169, P263, DOI 10.1111/j.1365-2249.2012.04620.x
  4. Barron MA, 2003, J INFECT DIS, V187, P26, DOI 10.1086/345957
  5. Bayry J, 2003, BLOOD, V101, P758, DOI 10.1182/blood-2002-05-1447
  6. Brenchley JM, 2012, ANNU REV IMMUNOL, V30, P149, DOI 10.1146/annurev-immunol-020711-075001
  7. Brenchley JM, 2006, NAT MED, V12, P1365, DOI 10.1038/nm1511
  8. Carvalho KI, 2010, PLOS ONE, V5
  9. Cunningham-Rundles C, 2010, BLOOD, V116, P7, DOI 10.1182/blood-2010-01-254417
  10. Deeks SG, 2004, BLOOD, V104, P942, DOI 10.1182/blood-2003-09-3333
  11. Donaghy H, 2001, BLOOD, V98, P2574, DOI 10.1182/blood.V98.8.2574
  12. Eggena MP, 2005, J IMMUNOL, V174, P4407
  13. Eller MA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018779
  14. Gelfand EW, 2012, NEW ENGL J MED, V367, P2015, DOI 10.1056/NEJMra1009433
  15. Genre J, 2009, CLIN IMMUNOL, V132, P215, DOI 10.1016/j.clim.2009.03.519
  16. GIORGI JV, 1989, CLIN IMMUNOL IMMUNOP, V52, P10, DOI 10.1016/0090-1229(89)90188-8
  17. Giorgi JV, 1999, J INFECT DIS, V179, P859, DOI 10.1086/314660
  18. Giovannetti A, 2007, J IMMUNOL, V178, P3932
  19. Gouilleux-Gruart V, 2013, CLIN EXP IMMUNOL, V171, P186, DOI 10.1111/cei.12002
  20. Grassi F, 1999, AIDS, V13, P759, DOI 10.1097/00002030-199905070-00004
  21. Hazenberg MD, 2003, AIDS, V17, P1881, DOI 10.1097/01.aids.0000076311.76477.6e
  22. Hunt PW, 2008, J INFECT DIS, V197, P126, DOI 10.1086/524143
  23. Josefowicz SZ, 2012, ANNU REV IMMUNOL, V30, P531, DOI 10.1146/annurev.immunol.25.022106.141623
  24. Kasztalska K, 2011, CLIN DRUG INVEST, V31, P299, DOI 10.2165/11586710-000000000-00000
  25. Kaufmann DE, 2009, J IMMUNOL, V182, P5891, DOI 10.4049/jimmunol.0803771
  26. Kaufmann DE, 2007, NAT IMMUNOL, V8, P1246, DOI 10.1038/ni1515
  27. Kaveri SV, 2011, CLIN EXP IMMUNOL, V164, P2, DOI 10.1111/j.1365-2249.2011.04387.x
  28. Khaitan Alka, 2011, Curr HIV/AIDS Rep, V8, P4, DOI 10.1007/s11904-010-0066-0
  29. Klatt NR, 2012, TRENDS MICROBIOL
  30. Leeansyah E, 2013, CURR OPIN HIV AIDS, V8, P117, DOI 10.1097/COH.0b013e32835c7134
  31. Litzman J, 2012, CLIN EXP IMMUNOL, V170, P321, DOI 10.1111/j.1365-2249.2012.04655.x
  32. Melo KM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006269
  33. Moll M, 2009, EUR J IMMUNOL, V39, P902, DOI 10.1002/eji.200838780
  34. Motsinger A, 2002, J EXP MED, V195, P869, DOI 10.1084/jem.20011712
  35. Ndhlovu LC, 2008, J LEUKOCYTE BIOL, V83, P254, DOI 10.1189/jlb.0507281
  36. Nordoy I, 1998, CLIN EXP IMMUNOL, V114, P258
  37. Park MA, 2008, LANCET, V372, P489, DOI 10.1016/S0140-6736(08)61199-X
  38. Salzer U, 2012, ANN NY ACAD SCI, V1250, P41, DOI 10.1111/j.1749-6632.2011.06377.x
  39. Sandberg JK, 2002, J VIROL, V76, P7528, DOI 10.1128/JVI.76.15.7528-7534.2002
  40. Sandberg JK, 2005, TRENDS IMMUNOL, V26, P347, DOI 10.1016/j.it.2005.05.006
  41. Sandler NG, 2012, NAT REV MICROBIOL, V10, P655, DOI 10.1038/nrmicro2848
  42. Shulzhenko N, 2011, NAT MED, V17, P1585, DOI 10.1038/nm.2505
  43. Van Kaer L, 2012, TRENDS IMMUNOL
  44. van der Vliet HJJ, 2002, J IMMUNOL, V168, P1490
  45. Vermeulen JN, 2007, AIDS RES HUM RETROV, V23, P1348, DOI 10.1089/aid.2006.0210
  46. Young GR, 2012, NATURE, V491, P774, DOI 10.1038/nature11599