BLM germline and somatic PKMYT1 and AHCY mutations: Genetic variations beyond MYCN and prognosis in neuroblastoma

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
CHURCHILL LIVINGSTONE
Citação
MEDICAL HYPOTHESES, v.97, p.22-25, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Neuroblastoma (NB) is the most common extra cranial solid tumor of childhood and often lethal in childhood. Clinical and biologic characteristics that are independently prognostic of outcome in NB are currently used for risk stratification to optimally the therapy. It includes age at diagnosis, International Neuroblastoma Staging System tumor histopathology and MYCN amplification. However, even in patients with theoretically good prognosis, such as localized tumor and non amplified MYCN, either disease progress or recurrence may occur. Potential genetic determinants of this unfavorable behavior are not yet fully clarified. The presence of elevated expression of AHCY, PKMYT1, and BLM has accompanied poor prognosis MYCN-amplified neuroblastoma patients. Considering the potential implication of these genes on the clinical management of NB, we hypothesize that the identification-of genetic variations may have significant impact during development of the recurrent or progressive disease. Using targeted DNA sequencing, we analyzed the mutation profiles of the genes PKMYT1, AHCY, and BLM in tumor samples of five patients with MYCN amplified and 15 MYCN non-amplified NB. In our study, BLM germline variants were detected in two patients with MYCN-non-amplified neuroblastoma. Our data allow us to hypothesize that, regardless of MYCN status, these mutations partially abolish BLM protein activity by impairing its ATPase and helicase activities. BLM mutations are also clinically relevant because BLM plays an important role in DNA damage repair and the maintenance of genomic integrity. We also found a novel variant in our cohort, PKMYT1 mutation localized in the C-terminal domain with effect unknown on NB. We hypothesize that this variant may affect the catalytic activity of PKMYT1 in NB, specifically when CDK1 is complexed to cyclins. The prognostic value of this mutation must be further investigated. Another mutation identified was a nonsynonymous variant in AHCY. This variant may be related to the slow progression of the disease, even in more aggressive cases. It affects the maintenance of the catalytic capacity of AHCY, leading to the consequent functional effects observed in the NB patients studied. In conclusion, our hypothesis may provide that mutations in BLM, AHCY and PKMYT1 genes found in children with MYCN-amplified or MYCN-non amplified neuroblastomas, may be associated with the prognosis of the disease.
Palavras-chave
Referências
  1. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  2. Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632
  3. Bamord S, 2004, BRIT J CANCER, V91, P355
  4. Baric I, 2004, P NATL ACAD SCI USA, V101, P4234, DOI 10.1073/pnas.0400658101
  5. Brodeur GM, 2003, NAT REV CANCER, V3, P203, DOI 10.1038/nrc1014
  6. Calin G, 2001, BMC GENET, V2, DOI 10.1186/1471-2156-2-14
  7. Chayka O, 2015, J BIOL CHEM, V290, P2198, DOI 10.1074/jbc.M114.624056
  8. Chun S, 2009, GENOME RES, V19, P1553, DOI 10.1101/gr.092619.109
  9. Croteau DL, 2014, ANNU REV BIOCHEM, V83, P519, DOI 10.1146/annurev-biochem-060713-035428
  10. de Voer RM, 2015, CANCER SCI, V5, P14060, DOI [10.1038/, DOI 10.1038/SREP14060]
  11. Feng QP, 2009, J NEUROCHEM, V110, P1806, DOI 10.1111/j.1471-4159.2009.06276.x
  12. Fernandez-Sanchez ME, 2009, MOL CELL BIOL, V29, P6182, DOI 10.1128/MCB.00973-09
  13. Fumic K, 2007, EUR J HUM GENET, V15, P347, DOI 10.1038/sj.ejhg.5201757
  14. German J, 2012, P NATL ACAD SCI USA, V109, P19357
  15. Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86
  16. Landrum MJ, 2014, NUCLEIC ACIDS RES, V42, pD980, DOI 10.1093/nar/gkt1113
  17. Leal JF, 2008, CARCINOGENESIS, V29, P2089, DOI 10.1093/carcin/bgn198
  18. Lee MH, 2001, CELL MOL LIFE SCI, V58, P1907, DOI 10.1007/PL00000826
  19. Lee SY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090459
  20. Masserot C, 2016, MOL ONCOL, V10, P240, DOI 10.1016/j.molonc.2015.09.010
  21. Mirzaei H, 2012, P NATL ACAD SCI USA, V109, P19357, DOI 10.1073/pnas.1210304109
  22. Morandi F, 2014, ANN NY ACAD SCI, V1335, P23
  23. Park JR, 2010, HEMATOL ONCOL CLIN N, V24, P65, DOI 10.1016/j.hoc.2009.11.011
  24. Payne M, 2009, BIOCHEM SOC T, V37, P553, DOI 10.1042/BST0370553
  25. Prokofyeva D, 2013, BREAST CANCER RES TR, V137, P533, DOI 10.1007/s10549-012-2357-1
  26. Rihani A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114696
  27. Rimmer A, 2014, NAT GENET, V46, P912, DOI 10.1038/ng.3036
  28. Schramm A, 2015, NAT GENET, V47, P872, DOI 10.1038/ng.3349
  29. Schuetz JM, 2009, BMC MED GENET, V10, DOI 10.1186/1471-2350-10-117
  30. Schwartzentruber J, 2012, NATURE, V482, P226, DOI 10.1038/nature10833
  31. Schwarz JM, 2010, NAT METHODS, V7, P575, DOI 10.1038/nmeth0810-575
  32. Sherry ST, 2001, NUCLEIC ACIDS RES, V29, P308, DOI 10.1093/nar/29.1.308
  33. Sholler GLS, 2015, CANCER MED-US, V4, P871, DOI 10.1002/cam4.436
  34. Souza ACMF, 2009, BRAZ J MED BIOL RES, V42, P791, DOI 10.1590/S0100-879X2009000900004
  35. Supek F, 2014, CELL, V156, P1324, DOI 10.1016/j.cell.2014.01.051
  36. Tennessen JA, 2012, SCIENCE, V337, P64, DOI 10.1126/science.1219240
  37. Thompson ER, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002894
  38. Vugrek O, 2009, HUM MUTAT, V30, pE555, DOI 10.1002/humu.20985
  39. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  40. Wang YL, 2004, CANCER BIOL THER, V3, P305, DOI 10.4161/cbt.3.3.697
  41. Wells NJ, 1999, J CELL SCI, V112, P3361