Effect of Subthalamic Stimulation and Electrode Implantation in the Striatal Microenvironment in a Parkinson's Disease Rat Model

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorCAMPOS, Ana Carolina Pinheiro
dc.contributor.authorMARTINEZ, Raquel Chacon Ruiz
dc.contributor.authorAUADA, Aline Vivian Vatti
dc.contributor.authorLEBRUN, Ivo
dc.contributor.authorFONOFF, Erich Talamoni
dc.contributor.authorHAMANI, Clement
dc.contributor.authorPAGANO, Rosana Lima
dc.date.accessioned2022-12-21T13:23:42Z
dc.date.available2022-12-21T13:23:42Z
dc.date.issued2022
dc.description.abstractDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipSao Paulo Research Foundation [FAPESP: 2016/07168-2, 2018/18695-9, 2019/13781-7]
dc.description.sponsorshipHospital Sirio-Libanes
dc.identifier.citationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.20, article ID 12116, 17p, 2022
dc.identifier.doi10.3390/ijms232012116
dc.identifier.eissn1422-0067
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/50572
dc.language.isoeng
dc.publisherMDPIeng
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.rightsopenAccesseng
dc.rights.holderCopyright MDPIeng
dc.subjectParkinson's diseaseeng
dc.subjectdeep brain stimulationeng
dc.subjectsubthalamic stimulationeng
dc.subjectneuroinflammationeng
dc.subjectastrocyteseng
dc.subjectglutamate excitotoxicityeng
dc.subject.otherdeep brain-stimulationeng
dc.subject.otherdopaminergic-neuronseng
dc.subject.otherfocused ultrasoundeng
dc.subject.othersubstantia-nigraeng
dc.subject.otherglutamateeng
dc.subject.othernucleuseng
dc.subject.otherastrocyteseng
dc.subject.othermicrogliaeng
dc.subject.othersynapseseng
dc.subject.otherexcitotoxicityeng
dc.subject.wosBiochemistry & Molecular Biologyeng
dc.subject.wosChemistry, Multidisciplinaryeng
dc.titleEffect of Subthalamic Stimulation and Electrode Implantation in the Striatal Microenvironment in a Parkinson's Disease Rat Modeleng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryCanadá
hcfmusp.affiliation.countryisoca
hcfmusp.author.externalCAMPOS, Ana Carolina Pinheiro:Hosp Sirio Libanes, Lab Neurosci, BR-01308901 Sao Paulo, Brazil
hcfmusp.author.externalAUADA, Aline Vivian Vatti:Butantan Inst, Biochem & Biophys Lab, BR-05508040 Sao Paulo, Brazil
hcfmusp.author.externalLEBRUN, Ivo:Butantan Inst, Biochem & Biophys Lab, BR-05508040 Sao Paulo, Brazil
hcfmusp.author.externalHAMANI, Clement:Sunnybrook Res Inst, Brain Sci Program, Toronto, ON M4N 3M5, Canada
hcfmusp.author.externalPAGANO, Rosana Lima:Hosp Sirio Libanes, Lab Neurosci, BR-01308901 Sao Paulo, Brazil
hcfmusp.citation.scopus6
hcfmusp.contributor.author-fmusphcRAQUEL CHACON RUIZ MARTINEZ
hcfmusp.contributor.author-fmusphcERICH TALAMONI FONOFF
hcfmusp.description.articlenumber12116
hcfmusp.description.issue20
hcfmusp.description.volume23
hcfmusp.origemWOS
hcfmusp.origem.pubmed36292973
hcfmusp.origem.scopus2-s2.0-85141000195
hcfmusp.origem.wosWOS:000873048000001
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceAkwa Y, 2022, AUTOPHAGY, DOI 10.1080/15548627.2022.2095791eng
hcfmusp.relation.referenceAlvarez L, 2005, BRAIN, V128, P570, DOI 10.1093/brain/awh397eng
hcfmusp.relation.referenceAmbrosi G, 2014, J NEURAL TRANSM, V121, P849, DOI 10.1007/s00702-013-1149-zeng
hcfmusp.relation.referenceAmorim BO, 2015, J NEUROINFLAMM, V12, DOI 10.1186/s12974-015-0384-7eng
hcfmusp.relation.referenceAnderson CM, 2000, GLIA, V32, P1eng
hcfmusp.relation.referenceAraque A, 1999, TRENDS NEUROSCI, V22, P208, DOI 10.1016/S0166-2236(98)01349-6eng
hcfmusp.relation.referenceBartels AL, 2010, PARKINSONISM RELAT D, V16, P57, DOI 10.1016/j.parkreldis.2009.05.005eng
hcfmusp.relation.referenceBENABID AL, 1994, STEREOT FUNCT NEUROS, V62, P76, DOI 10.1159/000098600eng
hcfmusp.relation.referenceBenabid AL, 2003, CURR OPIN NEUROBIOL, V13, P696, DOI 10.1016/j.conb.2003.11.001eng
hcfmusp.relation.referenceBenabid AL, 2009, LANCET NEUROL, V8, P67, DOI 10.1016/S1474-4422(08)70291-6eng
hcfmusp.relation.referenceBENAZZOUZ A, 1995, NEUROSCI LETT, V189, P77, DOI 10.1016/0304-3940(95)11455-6eng
hcfmusp.relation.referenceBezard E, 2001, NAT REV NEUROSCI, V2, P577, DOI 10.1038/35086062eng
hcfmusp.relation.referenceCentonze D, 2005, NEUROSCIENCE, V133, P831, DOI 10.1016/j.neuroscience.2005.03.006eng
hcfmusp.relation.referenceCharan J, 2013, J PHARMACOL PHARMACO, V4, P303, DOI 10.4103/0976-500X.119726eng
hcfmusp.relation.referenceChen YM, 2001, J NEUROCHEM, V77, P1601, DOI 10.1046/j.1471-4159.2001.00374.xeng
hcfmusp.relation.referenceChudler EH, 2008, BRAIN RES, V1213, P41, DOI 10.1016/j.brainres.2008.03.053eng
hcfmusp.relation.referenceChung EKY, 2008, J COMP NEUROL, V511, P421, DOI 10.1002/cne.21852eng
hcfmusp.relation.referenceFerrari CC, 2006, NEUROBIOL DIS, V24, P183, DOI 10.1016/j.nbd.2006.06.013eng
hcfmusp.relation.referenceDafsari HS, 2016, BRAIN STIMUL, V9, P78, DOI 10.1016/j.brs.2015.08.005eng
hcfmusp.relation.referencede Andrade EM, 2020, J NEUROSURG, V132, P239, DOI 10.3171/2018.7.JNS173239eng
hcfmusp.relation.referenceDomenici RA, 2019, EXP NEUROL, V315, P72, DOI 10.1016/j.expneurol.2019.02.007eng
hcfmusp.relation.referenceDvorzhak A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082191eng
hcfmusp.relation.referenceElias WJ, 2016, NEW ENGL J MED, V375, P730, DOI 10.1056/NEJMoa1600159eng
hcfmusp.relation.referenceEscartin C, 2021, NAT NEUROSCI, V24, P312, DOI 10.1038/s41593-020-00783-4eng
hcfmusp.relation.referenceEulenburg V, 2010, BRAIN RES REV, V63, P103, DOI 10.1016/j.brainresrev.2010.01.003eng
hcfmusp.relation.referenceFahn S, 1999, ARCH NEUROL-CHICAGO, V56, P529, DOI 10.1001/archneur.56.5.529eng
hcfmusp.relation.referenceFenoy AJ, 2014, CNS NEUROSCI THER, V20, P191, DOI 10.1111/cns.12223eng
hcfmusp.relation.referenceFreeman L, 2017, J EXP MED, V214, P1351, DOI 10.1084/jem.20150237eng
hcfmusp.relation.referenceGerhard A, 2006, NEUROBIOL DIS, V21, P404, DOI 10.1016/j.nbd.2005.08.002eng
hcfmusp.relation.referenceHamani C, 2017, ENEURO, V4, DOI 10.1523/ENEURO.0140-17.2017eng
hcfmusp.relation.referenceHardingham GE, 2010, NAT REV NEUROSCI, V11, P682, DOI 10.1038/nrn2911eng
hcfmusp.relation.referenceHerrington TM, 2016, J NEUROPHYSIOL, V115, P19, DOI 10.1152/jn.00281.2015eng
hcfmusp.relation.referenceHiguchi Y, 2017, MOVEMENT DISORD, V32, P28, DOI 10.1002/mds.26625eng
hcfmusp.relation.referenceHirsch EC, 2009, LANCET NEUROL, V8, P382, DOI 10.1016/S1474-4422(09)70062-6eng
hcfmusp.relation.referenceHoliga S, 2015, NEUROIMAGE-CLIN, V9, P264, DOI 10.1016/j.nicl.2015.08.008eng
hcfmusp.relation.referenceHornykiewicz O, 1987, Adv Neurol, V45, P19eng
hcfmusp.relation.referenceIovino L, 2020, J PHARMACOL SCI, V144, P151, DOI 10.1016/j.jphs.2020.07.011eng
hcfmusp.relation.referenceJech R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049056eng
hcfmusp.relation.referenceJuri C, 2010, J NEUROL SCI, V289, P60, DOI 10.1016/j.jns.2009.08.018eng
hcfmusp.relation.referenceKim KI, 2021, GLIA, V69, P2133, DOI 10.1002/glia.24013eng
hcfmusp.relation.referenceKimelberg HK, 2010, NEUROTHERAPEUTICS, V7, P338, DOI 10.1016/j.nurt.2010.07.006eng
hcfmusp.relation.referenceKofler J, 2011, TOXICOL PATHOL, V39, P103, DOI 10.1177/0192623310387619eng
hcfmusp.relation.referenceKrack P, 2003, NEW ENGL J MED, V349, P1925, DOI 10.1056/NEJMoa035275eng
hcfmusp.relation.referenceKumar R, 1998, NEUROLOGY, V51, P850, DOI 10.1212/WNL.51.3.850eng
hcfmusp.relation.referenceLee KJ, 2017, J KOREAN NEUROSURG S, V60, P138, DOI 10.3340/jkns.2016.0202.020eng
hcfmusp.relation.referenceLehre KP, 1998, J NEUROSCI, V18, P8751, DOI 10.1523/jneurosci.18-21-08751.1998eng
hcfmusp.relation.referenceLiddelow SA, 2017, NATURE, V541, P481, DOI 10.1038/nature21029eng
hcfmusp.relation.referenceLuo B, 2021, FRONT NEUROSCI-SWITZ, V15, DOI 10.3389/fnins.2021.699010eng
hcfmusp.relation.referenceMallet N, 2006, J NEUROSCI, V26, P3875, DOI 10.1523/JNEUROSCI.4439-05.2006eng
hcfmusp.relation.referenceMartinez RCR, 2013, MOVEMENT DISORD, V28, P2027, DOI 10.1002/mds.25691eng
hcfmusp.relation.referenceMccoy MK, 2006, J NEUROSCI, V26, P9365, DOI 10.1523/JNEUROSCI.1504-06.2006eng
hcfmusp.relation.referenceMcGeer P.L., 2001, ADV NEUROL, V86eng
hcfmusp.relation.referenceMcGeer PL, 2008, MOVEMENT DISORD, V23, P474, DOI 10.1002/mds.21751eng
hcfmusp.relation.referenceMCGEER PL, 1988, NEUROLOGY, V38, P1285, DOI 10.1212/WNL.38.8.1285eng
hcfmusp.relation.referenceMeshul CK, 1999, NEUROSCIENCE, V88, P1, DOI 10.1016/S0306-4522(98)00189-4eng
hcfmusp.relation.referenceNewman EA, 2003, TRENDS NEUROSCI, V26, P536, DOI 10.1016/S0166-2236(03)00237-6eng
hcfmusp.relation.referenceObeso JA, 2000, TRENDS NEUROSCI, V23, pS8, DOI 10.1016/S1471-1931(00)00028-8eng
hcfmusp.relation.referenceParsons MP, 2014, NEURON, V82, P279, DOI 10.1016/j.neuron.2014.03.030eng
hcfmusp.relation.referencePaxinos G, 1998, RAT BRAIN IN STEREOTAXIC COORDINATES, FOURTH ED., pixeng
hcfmusp.relation.referencePekny M, 2005, GLIA, V50, P427, DOI 10.1002/glia.20207eng
hcfmusp.relation.referencePelvig DP, 2008, NEUROBIOL AGING, V29, P1754, DOI 10.1016/j.neurobiolaging.2007.04.013eng
hcfmusp.relation.referencePereira JLB, 2016, BASAL GANGLIA, V6, P83, DOI 10.1016/j.baga.2016.01.003eng
hcfmusp.relation.referenceCampos ACP, 2020, CELL MOL NEUROBIOL, V40, P939, DOI 10.1007/s10571-019-00784-3eng
hcfmusp.relation.referenceCampos ACP, 2019, EXP NEUROL, V318, P12, DOI 10.1016/j.expneurol.2019.04.015eng
hcfmusp.relation.referenceRascol O, 2000, NEW ENGL J MED, V342, P1484, DOI 10.1056/NEJM200005183422004eng
hcfmusp.relation.referenceRobinson S, 2003, EXP NEUROL, V180, P73, DOI 10.1016/S0014-4886(02)00050-Xeng
hcfmusp.relation.referenceRose CR, 2018, BRAIN RES BULL, V136, P3, DOI 10.1016/j.brainresbull.2016.12.013eng
hcfmusp.relation.referenceRothstein JD, 1996, NEURON, V16, P675, DOI 10.1016/S0896-6273(00)80086-0eng
hcfmusp.relation.referenceSaijo K, 2009, CELL, V137, P47, DOI 10.1016/j.cell.2009.01.038eng
hcfmusp.relation.referenceSANBERG PR, 1980, NATURE, V284, P472, DOI 10.1038/284472a0eng
hcfmusp.relation.referenceSood A, 2021, J NEUROSCI RES, V99, P3148, DOI 10.1002/jnr.24977eng
hcfmusp.relation.referenceTawfik VL, 2010, NEUROSURGERY, V67, P367, DOI 10.1227/01.NEU.0000371988.73620.4Ceng
hcfmusp.relation.referenceTritsch NX, 2012, NATURE, V490, P262, DOI 10.1038/nature11466eng
hcfmusp.relation.referenceVentura R, 1999, J NEUROSCI, V19, P6897, DOI 10.1523/JNEUROSCI.19-16-06897.1999eng
hcfmusp.relation.referenceWei L, 2019, NEURAL PLAST, V2019, DOI 10.1155/2019/1247276eng
hcfmusp.relation.referenceWeintraub D, 2017, MOVEMENT DISORD, V32, P20, DOI 10.1002/mds.26599eng
hcfmusp.relation.referenceYang H, 2006, LIFE SCI, V78, P1940, DOI 10.1016/j.lfs.2005.08.001eng
hcfmusp.relation.referenceZhang W, 2005, FASEB J, V19, P533, DOI 10.1096/fj.04-2751comeng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication19687d8f-a90e-4202-866b-af12dc734ede
relation.isAuthorOfPublication4c02c3a0-da5e-4a38-ba96-49611c964133
relation.isAuthorOfPublication.latestForDiscovery19687d8f-a90e-4202-866b-af12dc734ede
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_CAMPOS_Effect_of_Subthalamic_Stimulation_and_Electrode_Implantation_in_2022.PDF
Tamanho:
3.63 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)