Tissue Engineering and Cell Therapy for Cartilage Repair: Preclinical Evaluation Methods

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorSANTANNA, Joao P. C.
dc.contributor.authorFARIA, Rafaella R.
dc.contributor.authorASSAD, Isabella P.
dc.contributor.authorPINHEIRO, Carla C. G.
dc.contributor.authorAIELLO, Vera D.
dc.contributor.authorALBUQUERQUE-NETO, Cyro
dc.contributor.authorBORTOLUSSI, Roberto
dc.contributor.authorCESTARI, Idagene A.
dc.contributor.authorMAIZATO, Marina J. S.
dc.contributor.authorHERNANDEZ, Arnaldo J.
dc.contributor.authorBUENO, Daniela F.
dc.contributor.authorFERNANDES, Tiago L.
dc.date.accessioned2022-04-19T13:02:38Z
dc.date.available2022-04-19T13:02:38Z
dc.date.issued2022
dc.description.abstractA chondral injury is a limiting disease that can affect the quality of life and be an economic burden due to the cost of immediate treatment and loss in work productivity. If left untreated, such an injury may progress to osteoarthritis, a degenerative and debilitating joint disease characterized by pain and functional impairment. Mesenchymal stromal cells (MSCs), which have immune-modulatory properties and the ability to differentiate into chondroblasts and osteoblasts, are a predictable source for the treatment of cartilage injuries. This article presents tools to evaluate cartilage restoration by tissue engineering and cell therapy treatment in a translational and preclinical large animal model. In this controlled experimental study with 14 miniature pigs, a scaffold-free tissue engineering construct (TEC) derived from dental pulp and synovial MSCs for cartilage therapy was tested. Total thickness cartilage defects were performed in both posterior knees. The defect was left empty in one of the knees, and the other received the TEC. The tissue repair was morphologically assessed by magnetic resonance imaging (MRI) using the three-dimensional double echo steady-state (3D-DESS) sequence, and compositional assessment was carried out based on the T2 mapping technique. The osteochondral specimens were fixed for histopathology, decalcified, subjected to standard histological processing, sectioned, and stained with hematoxylin and eosin. The sections stained for immunohistochemical detection of collagen types were digested with pepsin and chondroitinase and incubated with antibodies against them. The mechanical evaluation involved analysis of Young's modulus of the cartilage samples based on the indentation and maximum compression test. In addition, a finite element model was used to simulate and characterize properties of the osteochondral block. At 6 months after surgery, there were no complications with the animals and the MRI, histological, immunohistochemical, and biomechanical evaluations proved to be effective and qualified to differentiate good quality chondral repair from inadequate repair tissue. The proposed methods were feasible and capable to properly evaluate the defect filled with TEC containing stromal cells after 6 months of follow-up in a large animal model for articular cartilage restoration. Impact StatementArticular chondral injuries are prevalent and represent an economic burden due to the cost of treatment. The engineering of cartilage tissue can promote the repair of chondral injuries and is dependent on selecting appropriate cells and biocompatible frameworks. In this article, methods for evaluation of a scaffold-free cell delivery system made from mesenchymal stromal cells were present in a translational study that allows further clinical safety and efficacy trials.eng
dc.description.indexMEDLINEeng
dc.identifier.citationTISSUE ENGINEERING PART C-METHODS, v.28, n.2, p.73-82, 2022
dc.identifier.doi10.1089/ten.tec.2021.0208
dc.identifier.eissn1937-3392
dc.identifier.issn1937-3384
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/46018
dc.language.isoeng
dc.publisherMARY ANN LIEBERT, INCeng
dc.relation.ispartofTissue Engineering Part C-Methods
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright MARY ANN LIEBERT, INCeng
dc.subjecttissue engineeringeng
dc.subjectmesenchymal stromal cellseng
dc.subjectcartilage injurieseng
dc.subjectcartilage restorationeng
dc.subjectmagnetic resonance imagingeng
dc.subjectmechanical evaluationeng
dc.subject.otherarticular-cartilageeng
dc.subject.otherdental-pulpeng
dc.subject.otherstem-cellseng
dc.subject.otherin-vitroeng
dc.subject.othermechanical-propertieseng
dc.subject.otherkneeeng
dc.subject.otherdefectseng
dc.subject.othermodeleng
dc.subject.othermrieng
dc.subject.otherdifferentiationeng
dc.subject.wosCell & Tissue Engineeringeng
dc.subject.wosCell Biologyeng
dc.subject.wosEngineering, Biomedicaleng
dc.subject.wosMaterials Science, Biomaterialseng
dc.titleTissue Engineering and Cell Therapy for Cartilage Repair: Preclinical Evaluation Methodseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalPINHEIRO, Carla C. G.:Hosp Sirio Libanes, Sao Paulo, Brazil
hcfmusp.author.externalALBUQUERQUE-NETO, Cyro:Ctr Univ FEI, Dept Mech Engn, Sao Paulo, Brazil
hcfmusp.author.externalBORTOLUSSI, Roberto:Ctr Univ FEI, Dept Mech Engn, Sao Paulo, Brazil
hcfmusp.author.externalBUENO, Daniela F.:Hosp Sirio Libanes, Sao Paulo, Brazil
hcfmusp.citation.scopus4
hcfmusp.contributor.author-fmusphcJOAO PAULO CORTEZ DE SANT'ANNA
hcfmusp.contributor.author-fmusphcRAFAELLA ROGATTO DE FARIA
hcfmusp.contributor.author-fmusphcISABELA DE PAULA ASSAD
hcfmusp.contributor.author-fmusphcVERA DEMARCHI AIELLO
hcfmusp.contributor.author-fmusphcIDAGENE APARECIDA CESTARI
hcfmusp.contributor.author-fmusphcMARINA JUNKO SHIOTSU MAIZATO
hcfmusp.contributor.author-fmusphcARNALDO JOSE HERNANDEZ
hcfmusp.contributor.author-fmusphcTIAGO LAZZARETTI FERNANDES
hcfmusp.description.beginpage73
hcfmusp.description.endpage82
hcfmusp.description.issue2
hcfmusp.description.volume28
hcfmusp.origemWOS
hcfmusp.origem.pubmed35107353
hcfmusp.origem.scopus2-s2.0-85125001862
hcfmusp.origem.wosWOS:000760199900003
hcfmusp.publisher.cityNEW ROCHELLEeng
hcfmusp.publisher.countryUSAeng
hcfmusp.relation.referenceAndo W, 2007, BIOMATERIALS, V28, P5462, DOI 10.1016/j.biomaterials.2007.08.030eng
hcfmusp.relation.referenceAndo W, 2008, TISSUE ENG PT A, V14, P2041, DOI 10.1089/ten.tea.2008.0015eng
hcfmusp.relation.reference[Anonymous], 2010, EXP PHYSIOL, V95, P842, DOI [10.1111/j.1476-5381.2010.00872.x, 10.1113/expphysiol.2010.053793, 10.1113/jphysiol.2010.192278]eng
hcfmusp.relation.referenceArmitage OE, 2017, ACTA BIOMATER, V56, P36, DOI 10.1016/j.actbio.2016.12.036eng
hcfmusp.relation.referenceBinks DA, 2013, BRIT J RADIOL, V86, DOI 10.1259/bjr.20120163eng
hcfmusp.relation.referenceBueno D.F., BONE TISSUE ENG DENTeng
hcfmusp.relation.referenceChen K, 2014, ACTA ODONTOL SCAND, V72, P664, DOI 10.3109/00016357.2014.888756eng
hcfmusp.relation.referenceCosta AD, 2008, J CRANIOFAC SURG, V19, P204, DOI 10.1097/scs.0b013e31815c8a54eng
hcfmusp.relation.referenceCrema MD, 2011, RADIOGRAPHICS, V31, P37, DOI 10.1148/rg.311105084eng
hcfmusp.relation.referenceCurl WW, 1997, ARTHROSCOPY, V13, P456, DOI 10.1016/S0749-8063(97)90124-9eng
hcfmusp.relation.referenceDominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905eng
hcfmusp.relation.referenceEckstein F, 2006, ANN RHEUM DIS, V65, P433, DOI 10.1136/ard.2005.039370eng
hcfmusp.relation.referenceFernandes TL, 2018, TISSUE ENG PART C-ME, V24, P709, DOI [10.1089/ten.TEC.2018.0219, 10.1089/ten.tec.2018.0219]eng
hcfmusp.relation.referenceFernandes TL, 2018, STEM CELL REV REP, V14, P734, DOI 10.1007/s12015-018-9820-2eng
hcfmusp.relation.referenceFlanigan DC, 2010, MED SCI SPORT EXER, V42, P1795, DOI 10.1249/MSS.0b013e3181d9eea0eng
hcfmusp.relation.referenceGoebel L, 2014, OSTEOARTHR CARTILAGE, V22, P1386, DOI 10.1016/j.joca.2014.05.027eng
hcfmusp.relation.referenceGomoll AH, 2010, KNEE SURG SPORT TR A, V18, P434, DOI 10.1007/s00167-010-1072-xeng
hcfmusp.relation.referenceGouveia BG, 2015, J PHARM BIOALLIED SC, V7, P87, DOI 10.4103/0975-7406.154424eng
hcfmusp.relation.referenceGronthos S, 2002, J DENT RES, V81, P531, DOI 10.1177/154405910208100806eng
hcfmusp.relation.referenceHarris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010eng
hcfmusp.relation.referenceHayashi D, 2018, CARTILAGE, V9, P223, DOI 10.1177/1947603517710309eng
hcfmusp.relation.referenceHenriksson HB, 2009, SPINE, V34, P141, DOI 10.1097/BRS.0b013e31818f8c20eng
hcfmusp.relation.referenceHilkens P, 2013, CELL TISSUE RES, V353, P65, DOI 10.1007/s00441-013-1630-xeng
hcfmusp.relation.referenceKerkis I, 2012, TISSUE ENG PART B-RE, V18, P129, DOI [10.1089/ten.TEB.2011.0327, 10.1089/ten.teb.2011.0327]eng
hcfmusp.relation.referenceKnecht S, 2006, CLIN BIOMECH, V21, P999, DOI 10.1016/j.clinbiomech.2006.07.001eng
hcfmusp.relation.referenceKubosch EJ, 2018, CURR STEM CELL RES T, V13, P174, DOI 10.2174/1574888X12666171002111026eng
hcfmusp.relation.referenceKuo CK, 2006, CURR OPIN RHEUMATOL, V18, P64, DOI 10.1097/01.bor.0000198005.88568.dfeng
hcfmusp.relation.referenceLANGER R, 1993, SCIENCE, V260, P920, DOI 10.1126/science.8493529eng
hcfmusp.relation.referenceLi WJ, 2009, J TISSUE ENG REGEN M, V3, P1, DOI 10.1002/term.127eng
hcfmusp.relation.referenceMeloni GR, 2017, TISSUE ENG PT A, V23, P663, DOI 10.1089/ten.tea.2016.0191eng
hcfmusp.relation.referenceMosher TJ, 2004, SEMIN MUSCULOSKEL R, V8, P355, DOI 10.1055/s-2004-861764eng
hcfmusp.relation.referenceMurray MM, 2010, J BONE JOINT SURG AM, V92A, P2039, DOI 10.2106/JBJS.I.01368eng
hcfmusp.relation.referencePark YB, 2017, BMC MUSCULOSKEL DIS, V18, DOI 10.1186/s12891-017-1422-7eng
hcfmusp.relation.referencePedroni ACF, 2018, J CELL PHYSIOL, V233, P7026, DOI 10.1002/jcp.26626eng
hcfmusp.relation.referencePerera JR, 2012, ANN ROY COLL SURG, V94, P381, DOI 10.1308/003588412X13171221592573eng
hcfmusp.relation.referencePinheiro CCG, 2019, STEM CELLS INT, V2019, DOI 10.1155/2019/7951696eng
hcfmusp.relation.referencePonce MC, 2018, CLINICS, V73, DOI 10.6061/clinics/2018/e562eng
hcfmusp.relation.referenceRuehm S, 1998, J MAGN RESON IMAGING, V8, P1246, DOI 10.1002/jmri.1880080611eng
hcfmusp.relation.referenceSensebe L, 2011, HUM GENE THER, V22, P19, DOI 10.1089/hum.2010.197eng
hcfmusp.relation.referenceShimomura K, 2018, AM J SPORT MED, V46, P2384, DOI 10.1177/0363546518781825eng
hcfmusp.relation.referenceShimomura K, 2015, CARTILAGE, V6, p13S, DOI 10.1177/1947603515571002eng
hcfmusp.relation.referenceShowery JE, 2016, J ARTHROPLASTY, V31, P2108, DOI 10.1016/j.arth.2016.03.026eng
hcfmusp.relation.referenceStramandinoli-Zanicotti RT, 2014, J APPL ORAL SCI, V22, P218, DOI 10.1590/1678-775720130526eng
hcfmusp.relation.referenceToyras J, 2001, J BIOMECH, V34, P251, DOI 10.1016/S0021-9290(00)00189-5eng
hcfmusp.relation.referenceTrattnig S, 2009, EUR RADIOL, V19, P1582, DOI 10.1007/s00330-009-1352-3eng
hcfmusp.relation.referenceWOJTYS E, 1987, AM J SPORT MED, V15, P455, DOI 10.1177/036354658701500505eng
hcfmusp.scopus.lastupdate2024-06-16
relation.isAuthorOfPublication58e11eae-e8ef-4c10-b0e3-daa822eb796c
relation.isAuthorOfPublication78512cf4-3606-4a4c-b3d1-43f2e96ef703
relation.isAuthorOfPublication93260a8f-5642-4563-b5a2-de1c691b684d
relation.isAuthorOfPublicationd105992d-35d0-4e8b-a262-610c52ff58f4
relation.isAuthorOfPublication119d81f2-45c3-45e3-b683-868a3382b6e7
relation.isAuthorOfPublicationa5a8d9b8-0bb9-41ac-b56c-e2fef014af02
relation.isAuthorOfPublicationf60c0039-e8d3-432c-b98f-80198ef938f6
relation.isAuthorOfPublicatione90aba6c-42d9-497f-ae19-bda50b7a9137
relation.isAuthorOfPublication.latestForDiscovery58e11eae-e8ef-4c10-b0e3-daa822eb796c
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_SANTANNA_Tissue_Engineering_and_Cell_Therapy_for_Cartilage_Repair_2022.PDF
Tamanho:
10.74 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)