An approach to using heart rate monitoring to estimate the ventilation and load of air pollution exposure

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Citação
SCIENCE OF THE TOTAL ENVIRONMENT, v.520, p.160-167, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The effects of air pollution on health are associated with the amount of pollutants inhaled which depends on the environmental concentration and the inhaled air volume. It has not been clear whether statistical models of the relationship between heart rate and ventilation obtained using laboratory cardiopulmonary exercise test (CPET) can be applied to an external group to estimate ventilation. Objectives: To develop and evaluate a model to estimate respiratory ventilation based on heart rate for inhaled load of pollutant assessment in field studies. Methods: Sixty non-smoking men; 43 public street workers (public street group) and 17 employees of the Forest Institute (park group) performed a maximum cardiopulmonary exercise test (CPET). Regression equation models were constructed with the heart rate and natural logarithmic of minute ventilation data obtained on CPET. Ten individuals were chosen randomly (public street group) and were used for external validation of the models (test group). All subjects also underwent heart rate register, and particulate matter (PM2.5) monitoring for a 24-hour period. Results: For the public street group, the median difference between estimated and observed data was 0.5 (CI 95% -0.2 to 1.4) l/min and for the park group was 0.2 (CI 95% -0.2 to 1.2) l/min. In the test group, estimated values were smaller than the ones observed in the CPET, with a median difference of -2.4 (CI 95% -4.2 to -1.8) l/min. The mixed model estimated values suggest that this model is suitable for situations in which heart rate is around 120-140 bpm. Conclusion: The mixed effect model is suitable for ventilation estimate, with good accuracy when applied to homogeneous groups, suggesting that, in this case, the model could be used in field studies to estimate ventilation. A small but significant difference in the median of external validation estimates was observed, suggesting that the applicability of the model to external groups needs further evaluation.
Palavras-chave
Air pollution, Ventilation, Heart rate, Inhaled load estimate, Personal exposure
Referências
  1. Miller MR, 2005, EUR RESPIR J, V26, P153, DOI 10.1183/09031936.05.00034505
  2. [Anonymous], 2005, RES REP HLTH EFF I
  3. [Anonymous], 2003, AM J RESP CRIT CARE, V167, P211
  4. [Anonymous], 2009, RES REP HLTH EFF I
  5. [Anonymous], 1993, RES REP HLTH EFF I
  6. [Anonymous], 2011, RES REP HLTH EFF I
  7. [Anonymous], 2005, RES REP HLTH EFF I
  8. Brook RD, 2011, OCCUP ENVIRON MED, V68, P224, DOI 10.1136/oem.2009.053991
  9. Brunekreef B, 2009, ENVIRON HEALTH PERSP, V117, P1791, DOI 10.1289/ehp.0800467
  10. de Miranda RM, 2012, AIR QUAL ATMOS HLTH, V5, P63, DOI 10.1007/s11869-010-0124-1
  11. de Hartog JJ, 2010, ENVIRON HEALTH PERSP, V118, P1109, DOI 10.1289/ehp.0901747
  12. Dons E, 2012, ATMOS ENVIRON, V55, P392, DOI 10.1016/j.atmosenv.2012.03.020
  13. HEI (Health Effects Institute), 2010, 17 HEI
  14. Jacobs L, 2010, ENVIRON HEALTH-GLOB, V9, DOI 10.1186/1476-069X-9-64
  15. Jansen KL, 2005, ENVIRON HEALTH PERSP, V113, P1741, DOI 10.1289/ehp.8153
  16. Krewski D., 2009, RES REP HLTH EFF I, V140, P5
  17. Lim SS, 2012, LANCET, V380, P2224, DOI 10.1016/S0140-6736(12)61766-8
  18. Lioy P.J., 2011, RES REP HLTH EFF I, V160, P3
  19. Marshall P, 2001, CLIN SCI, V101, P477, DOI 10.1042/CS20010008
  20. MERMIER CM, 1993, ARCH ENVIRON HEALTH, V48, P263
  21. Miller MR, 2005, EUR RESPIR J, V26, P319, DOI 10.1183/09031936.05.00034805
  22. Nwokoro C, 2012, EUR RESPIR J, V40, P1091, DOI 10.1183/09031936.00195711
  23. O'Donoghue RT, 2007, ENVIRON INT, V33, P1, DOI 10.1016/j.envint.2006.05.005
  24. Panis L., 2011, SYSTEMATIC ANAL HLTH, P117
  25. Panis LI, 2010, ATMOS ENVIRON, V44, P2263, DOI 10.1016/j.atmosenv.2010.04.028
  26. Pellegrino R, 2005, EUR RESPIR J, V26, P948, DOI 10.1183/09031936.05.00035205
  27. Pereira Carlos Alberto de Castro, 2007, J Bras Pneumol, V33, P397, DOI 10.1590/S1806-37132007000400008
  28. Peters A, 2004, NEW ENGL J MED, V351, P1721, DOI 10.1056/NEJMoa040203
  29. Pope CA, 2002, JAMA-J AM MED ASSOC, V287, P1132, DOI 10.1001/jama.287.9.1132
  30. Samet J. M., 1993, RES REP HLTH EFF I, V59, P57
  31. Santos UP, 2008, J EPIDEMIOL COMMUN H, V62, P267, DOI 10.1136/jech.2006.058123
  32. STRAM DO, 1994, BIOMETRICS, V50, P1171, DOI 10.2307/2533455
  33. Tomei F, 2001, OCCUP MED-OXFORD, V51, P198, DOI 10.1093/occmed/51.3.198
  34. Torricelli AAM, 2013, CORNEA, V32, pE11, DOI 10.1097/ICO.0b013e31825e845d
  35. Van Roosbroeck S, 2006, SCI TOTAL ENVIRON, V368, P565, DOI 10.1016/j.scitotenv.2006.03.034
  36. WATT M, 1995, OCCUP ENVIRON MED, V52, P790
  37. Zuurbier M, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-48
  38. Zuurbier M, 2011, EPIDEMIOLOGY, V22, P219, DOI 10.1097/EDE.0b013e3182093693
  39. Zuurbier M, 2011, ENVIRON HEALTH PERSP, V119, P1384, DOI 10.1289/ehp.1003151