Empagliflozin Inhibits Proximal Tubule NHE3 Activity, Preserves GFR, and Restores Euvolemia in Nondiabetic Rats with Induced Heart Failure

Carregando...
Imagem de Miniatura
Citações na Scopus
43
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC NEPHROLOGY
Citação
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, v.32, n.7, p.1616-1629, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background SGLT2 inhibitors reduce the risk of heart failure (HF) mortality and morbidity, regardless of the presence or absence of diabetes, but the mechanisms underlying this benefit remain unclear. Experiments with nondiabetic HF rats tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) inhibits proximal tubule (PT) NHE3 activity and improves renal salt and water handling. Methods Male Wistar rats were subjected to myocardial infarction or sham operation. After 4 weeks, rats that developed HF and sham rats were treated with EMPA or untreated for an additional 4 weeks. Immunoblotting and quantitative RT-PCR evaluated SGLT2 and NHE3 expression. Stationary in vivo microperfusion measured PT NHE3 activity. Results EMPA-treated HF rats displayed lower serum B-type natriuretic peptide levels and lower right ventricle and lung weight to tibia length than untreated HF rats. Uponsaline challenge, the diuretic and natriuretic responses of EMPA-treated HF rats were similar to those of sham rats and were higher than those of untreated HF rats. Additionally, EMPA treatment prevented GFR decline and renal atrophy in HF rats. PT NHE3 activity was higher in HF rats than in sham rats, whereas treatment with EMPA markedly reduced NHE3 activity. Unexpectedly, SGLT2 protein and mRNA abundance were upregulated in the PT of HF rats. Conclusions Prevention of HF progression by EMPA is associated with reduced PTNHE3 activity, restoration of euvolemia, and preservation of renal mass. Moreover, dysregulation of PT SGLT2 may be involved in the pathophysiology of nondiabetic HF.
Palavras-chave
Referências
  1. Brisco Meredith A, 2014, Curr Heart Fail Rep, V11, P485, DOI 10.1007/s11897-014-0226-4
  2. Chowdhury B, 2020, BIOCHEM BIOPH RES CO, V524, P50, DOI 10.1016/j.bbrc.2020.01.015
  3. Crajoinas RO, 2016, AM J PHYSIOL-CELL PH, V311, pC768, DOI 10.1152/ajpcell.00191.2016
  4. Crajoinas RO, 2010, AM J PHYSIOL-RENAL, V299, pF872, DOI 10.1152/ajprenal.00654.2009
  5. Damman K, 2015, EUR HEART J, V36, P1437, DOI 10.1093/eurheartj/ehv010
  6. dos Santos DS, 2020, AM J PHYSIOL-CELL PH, V318, pC328, DOI 10.1152/ajpcell.00275.2019
  7. Ghezzi C, 2017, J AM SOC NEPHROL, V28, P802, DOI 10.1681/ASN.2016050510
  8. Griffin M, 2020, CIRCULATION, V142, P1028, DOI 10.1161/CIRCULATIONAHA.120.045691
  9. Guazzi M, 2017, J AM COLL CARDIOL, V69, P1718, DOI 10.1016/j.jacc.2017.01.051
  10. Hallow KM, 2018, AM J PHYSIOL-RENAL, V315, pF1295, DOI 10.1152/ajprenal.00202.2018
  11. Heerspink HJL, 2013, DIABETES OBES METAB, V15, P853, DOI 10.1111/dom.12127
  12. Inoue BH, 2013, AM J PHYSIOL-RENAL, V305, pF216, DOI 10.1152/ajprenal.00255.2012
  13. Inoue BH, 2012, AM J PHYSIOL-REG I, V302, pR166, DOI 10.1152/ajpregu.00127.2011
  14. JOHNS TNP, 1954, ANN SURG, V140, P675, DOI 10.1097/00000658-195411000-00006
  15. Kashihara N, 2020, CURR OPIN NEPHROL HY, V29, P112, DOI 10.1097/MNH.0000000000000561
  16. Kocinsky HS, 2005, AM J PHYSIOL-RENAL, V289, pF249, DOI 10.1152/ajprenal.00082.2004
  17. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  18. Martins FL, 2020, HYPERTENSION, V76, P839, DOI 10.1161/HYPERTENSIONAHA.120.14868
  19. McMurray JJV, 2019, NEW ENGL J MED, V381, P1995, DOI 10.1056/NEJMoa1911303
  20. Mullens W, 2017, EUR HEART J, V38, P1872, DOI 10.1093/eurheartj/ehx035
  21. Neal B, 2017, NEW ENGL J MED, V377, P644, DOI 10.1056/NEJMoa1611925
  22. Nespoux J, 2018, CLIN SCI, V132, P1329, DOI 10.1042/CS20171298
  23. Neuen BL, 2019, LANCET DIABETES ENDO, V7, P845, DOI 10.1016/S2213-8587(19)30256-6
  24. Packer M, 2020, NEW ENGL J MED, V383, P1413, DOI 10.1056/NEJMoa2022190
  25. Packer M, 2017, CIRCULATION, V136, P1548, DOI 10.1161/CIRCULATIONAHA.117.030418
  26. Pessoa TD, 2014, J AM SOC NEPHROL, V25, P2028, DOI 10.1681/ASN.2013060588
  27. Pfaffl MW, 2004, BIOTECHNOL LETT, V26, P509, DOI 10.1023/B:BILE.0000019559.84305.47
  28. Pirklbauer M, 2019, AM J PHYSIOL-RENAL, V316, pF449, DOI 10.1152/ajprenal.00431.2018
  29. Pontes RB, 2015, AM J PHYSIOL-RENAL, V308, pF848, DOI 10.1152/ajprenal.00515.2014
  30. Rahmoune H, 2005, DIABETES, V54, P3427, DOI 10.2337/diabetes.54.12.3427
  31. Vallon V, 2000, AM J PHYSIOL-RENAL, V278, pF375, DOI 10.1152/ajprenal.2000.278.3.F375
  32. Vallon V, 2011, J AM SOC NEPHROL, V22, P104, DOI 10.1681/ASN.2010030246
  33. Veiras LC, 2017, J AM SOC NEPHROL, V28, P3504, DOI 10.1681/ASN.2017030295
  34. Wang J, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185600
  35. Wang XXX, 2017, J BIOL CHEM, V292, P5335, DOI 10.1074/jbc.M117.779520
  36. Wiviott SD, 2019, NEW ENGL J MED, V380, P347, DOI 10.1056/NEJMoa1812389
  37. Zhang SL, 1999, KIDNEY INT, V55, P454, DOI 10.1046/j.1523-1755.1999.00271.x
  38. Zhang YF, 2018, KIDNEY INT, V94, P524, DOI 10.1016/j.kint.2018.05.002
  39. Zinman B, 2016, NEW ENGL J MED, V374, P1094, DOI 10.1056/NEJMc1600827