The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorLABERIANO-FERNANDEZ, Caddie
dc.contributor.authorBALDAVIRA, Camila Machado
dc.contributor.authorMACHADO-RUGOLO, Juliana
dc.contributor.authorTAMEGNON, Auriole
dc.contributor.authorPANDURENGAN, Renganayaki Krishna
dc.contributor.authorAB'SABER, Alexandre Muxfeldt
dc.contributor.authorBALANCIN, Marcelo Luiz
dc.contributor.authorTAKAGAKI, Teresa Yae
dc.contributor.authorNAGAI, Maria Aparecida
dc.contributor.authorCAPELOZZI, Vera Luiza
dc.contributor.authorPARRA, Edwin Roger
dc.date.accessioned2023-12-15T18:45:46Z
dc.date.available2023-12-15T18:45:46Z
dc.date.issued2023
dc.description.abstractSimple Summary Identifying biomarkers to guide immunotherapy regimens remains an unmet clinical need in malignant pleural mesothelioma. A potential source of such markers is tumor-associated macrophages (TAMs), which contribute to the immunosuppressive microenvironment of mesothelioma. By examining distinct subsets of pleural macrophages to identify their gene signatures and protein expression, we found that TAMs preferentially contribute to M2a and M2b phenotypes, and M2a, M2b, and M2c more specifically contributed to immune tolerance. CD206, ARG1, CD274, CD163, and MRP8-14 are potential therapeutic targets in this disease.Abstract Background: Several tumor-associated macrophages (TAMs) have shown promise as prognosticators in cancer. Our aim was to validate the importance of TAMs in malignant pleural mesothelioma (MPM) using a two-stage design. Methods: We explored The Cancer Genome Atlas (TCGA-MESO) to select immune-relevant macrophage genes in MPM, including M1/M2 markers, as a discovery cohort. This computational cohort was used to create a multiplex immunofluorescence panel. Moreover, a cohort of 68 samples of MPM in paraffin blocks was used to validate the macrophage phenotypes and the co-localization and spatial distribution of these immune cells within the TME and the stromal or tumor compartments. Results: The discovery cohort revealed six immune-relevant macrophage genes (CD68, CD86, CD163, CD206, ARG1, CD274), and complementary genes were differentially expressed by M1 and M2 phenotypes with distinct roles in the tumor microenvironment and were associated with the prognosis. In addition, immune-suppressed MPMs with increased enrichment of CD68, CD86, and CD163 genes and high densities of M2 macrophages expressing CD163 and CD206 proteins were associated with worse overall survival (OS). Interestingly, below-median distances from malignant cells to specific M2a and M2c macrophages were associated with worse OS, suggesting an M2 macrophage-driven suppressive component in these tumors. Conclusions: The interactions between TAMs in situ and, particularly, CD206+ macrophages are highly relevant to patient outcomes. High-resolution technology is important for identifying the roles of macrophage populations in tissue specimens and identifying potential therapeutic candidates in MPM.eng
dc.description.indexPubMed
dc.description.indexWoS
dc.description.indexScopus
dc.description.sponsorshipWe acknowledge the Multiplex Immunofluorescence and Image Analysis Laboratory (MIIAL), part of the Translational Molecular Pathology Immunoprofiling Laboratory (TMP-IL) Moonshots Platform at the Department of Translational Molecular Pathology, The Universi
dc.description.sponsorshipMultiplex Immunofluorescence and Image Analysis Laboratory (MIIAL)
dc.description.sponsorshipResearch Medical Library at The University of Texas MD Anderson Cancer Center
dc.identifier.citationCANCERS, v.15, n.21, article ID 5116, 23p, 2023
dc.identifier.doi10.3390/cancers15215116
dc.identifier.eissn2072-6694
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/57382
dc.language.isoeng
dc.publisherMDPIeng
dc.relation.ispartofCancers
dc.rightsopenAccesseng
dc.rights.holderCopyright MDPIeng
dc.subjectmalignant pleural mesotheliomaeng
dc.subjecttranscriptomaeng
dc.subjectmultiplex immunofluorescenceeng
dc.subjectprognosiseng
dc.subjectin silico analysiseng
dc.subject.othertumor-associated macrophageseng
dc.subject.otherreceptor activatoreng
dc.subject.otherasbestoseng
dc.subject.otherchemotherapyeng
dc.subject.othercellseng
dc.subject.otherexpressioneng
dc.subject.othersurvivaleng
dc.subject.otherligandeng
dc.subject.wosOncologyeng
dc.titleThe Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesotheliomaeng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryEstados Unidos
hcfmusp.affiliation.countryisous
hcfmusp.author.externalLABERIANO-FERNANDEZ, Caddie:Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
hcfmusp.author.externalTAMEGNON, Auriole:Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
hcfmusp.author.externalPANDURENGAN, Renganayaki Krishna:Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
hcfmusp.author.externalPARRA, Edwin Roger:Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcCAMILA MACHADO BALDAVIRA
hcfmusp.contributor.author-fmusphcJULIANA MACHADO RUGOLO
hcfmusp.contributor.author-fmusphcALEXANDRE MUXFELDT AB'SABER
hcfmusp.contributor.author-fmusphcMARCELO LUIZ BALANCIN
hcfmusp.contributor.author-fmusphcTERESA YAE TAKAGAKI
hcfmusp.contributor.author-fmusphcMARIA APARECIDA NAGAI
hcfmusp.contributor.author-fmusphcVERA LUIZA CAPELOZZI
hcfmusp.description.articlenumber5116
hcfmusp.description.issue21
hcfmusp.description.volume15
hcfmusp.origemWOS
hcfmusp.origem.pubmed37958292
hcfmusp.origem.scopus2-s2.0-85176507814
hcfmusp.origem.wosWOS:001099490400001
hcfmusp.publisher.cityBASELeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceArlauckas SP, 2018, THERANOSTICS, V8, P5842, DOI 10.7150/thno.26888eng
hcfmusp.relation.referenceArora S, 2018, IMMUNOBIOLOGY, V223, P383, DOI 10.1016/j.imbio.2017.11.001eng
hcfmusp.relation.referenceBlyth KG, 2018, RESP MED, V134, P31, DOI 10.1016/j.rmed.2017.11.015eng
hcfmusp.relation.referenceBroaddus VC, 1996, J CLIN INVEST, V98, P2050, DOI 10.1172/JCI119010eng
hcfmusp.relation.referenceCarbone M, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.04.29eng
hcfmusp.relation.referenceCassetta L, 2019, CANCER CELL, V35, P588, DOI 10.1016/j.ccell.2019.02.009eng
hcfmusp.relation.referenceCassetta L, 2018, NAT REV DRUG DISCOV, V17, P887, DOI 10.1038/nrd.2018.169eng
hcfmusp.relation.referenceCerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095eng
hcfmusp.relation.referenceChandrashekar DS, 2017, NEOPLASIA, V19, P649, DOI 10.1016/j.neo.2017.05.002eng
hcfmusp.relation.referenceChandrashekar DS, 2022, NEOPLASIA, V25, P18, DOI 10.1016/j.neo.2022.01.001eng
hcfmusp.relation.referenceChanput W, 2014, INT IMMUNOPHARMACOL, V23, P37, DOI 10.1016/j.intimp.2014.08.002eng
hcfmusp.relation.referenceChen YB, 2019, J BIOMED SCI, V26, DOI 10.1186/s12929-019-0568-zeng
hcfmusp.relation.referenceChéné AL, 2016, J THORAC ONCOL, V11, P1765, DOI 10.1016/j.jtho.2016.06.022eng
hcfmusp.relation.referenceChevrier S, 2017, CELL, V169, P736, DOI 10.1016/j.cell.2017.04.016eng
hcfmusp.relation.referenceChistiakov DA, 2017, LAB INVEST, V97, P4, DOI 10.1038/labinvest.2016.116eng
hcfmusp.relation.referenceCreaney J, 2022, GENOME MED, V14, DOI 10.1186/s13073-022-01060-8eng
hcfmusp.relation.referencede Gooijer CJ, 2018, TRANSL LUNG CANCER R, V7, P574, DOI 10.21037/tlcr.2018.04.10eng
hcfmusp.relation.referenceEgeblad M, 2008, DIS MODEL MECH, V1, P155, DOI 10.1242/dmm.000596eng
hcfmusp.relation.referenceFujimura T, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00003eng
hcfmusp.relation.referenceFujimura T, 2015, J INVEST DERMATOL, V135, P2884, DOI 10.1038/jid.2015.209eng
hcfmusp.relation.referenceGao JJ, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2004088eng
hcfmusp.relation.referenceGaudino G, 2020, TRANSL LUNG CANCER R, V9, pS39, DOI 10.21037/tlcr.2020.02.01eng
hcfmusp.relation.referenceGoudar Ranjit K, 2008, Ther Clin Risk Manag, V4, P205eng
hcfmusp.relation.referenceHagemann T, 2008, J EXP MED, V205, P1261, DOI 10.1084/jem.20080108eng
hcfmusp.relation.referenceHelm O, 2014, ONCOIMMUNOLOGY, V3, DOI 10.4161/21624011.2014.946818eng
hcfmusp.relation.referenceHuang YK, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11788-4eng
hcfmusp.relation.referenceHussell T, 2014, NAT REV IMMUNOL, V14, P81, DOI 10.1038/nri3600eng
hcfmusp.relation.referenceJablonski KA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145342eng
hcfmusp.relation.referenceJayasingam SD, 2020, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01512eng
hcfmusp.relation.referenceKakizaki A, 2015, ONCOIMMUNOLOGY, V4, DOI 10.1080/2162402X.2015.1047584eng
hcfmusp.relation.referenceKambayashi Y, 2015, J INVEST DERMATOL, V135, P2547, DOI 10.1038/jid.2015.199eng
hcfmusp.relation.referenceKiss M, 2018, CELL IMMUNOL, V330, P188, DOI 10.1016/j.cellimm.2018.02.008eng
hcfmusp.relation.referenceKou Y, 2022, SCAND J IMMUNOL, V95, DOI 10.1111/sji.13137eng
hcfmusp.relation.referenceLandrigan PJ, 2016, ANN GLOB HEALTH, V82, P214, DOI 10.1016/j.aogh.2016.01.017eng
hcfmusp.relation.referenceLey K, 2017, J IMMUNOL, V199, P2191, DOI 10.4049/jimmunol.1701135eng
hcfmusp.relation.referenceLi CX, 2021, J IMMUNOTHER CANCER, V9, DOI 10.1136/jitc-2020-001341eng
hcfmusp.relation.referenceLievense LA, 2016, J THORAC ONCOL, V11, P1755, DOI 10.1016/j.jtho.2016.06.021eng
hcfmusp.relation.referenceLurier EB, 2017, IMMUNOBIOLOGY, V222, P847, DOI 10.1016/j.imbio.2017.02.006eng
hcfmusp.relation.referenceMa RY, 2020, J EXP MED, V217, DOI 10.1084/jem.20191820eng
hcfmusp.relation.referenceMairinger F, 2013, J THORAC ONCOL, V8, pE80, DOI 10.1097/JTO.0b013e31829b1cf9eng
hcfmusp.relation.referenceMantovani A, 2017, NAT REV CLIN ONCOL, V14, P399, DOI 10.1038/nrclinonc.2016.217eng
hcfmusp.relation.referenceMartinez-Marin D, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174968eng
hcfmusp.relation.referenceModak M, 2022, JCI INSIGHT, V7, DOI 10.1172/jci.insight.155022eng
hcfmusp.relation.referenceMolina A.M., 2023, Biomed. J. Sci. Tech. Res, V48, P39103eng
hcfmusp.relation.referenceNoy R, 2014, IMMUNITY, V41, P49, DOI 10.1016/j.immuni.2014.06.010eng
hcfmusp.relation.referenceOsmanbeyoglu HU, 2022, CANCERS, V14, DOI 10.3390/cancers14225626eng
hcfmusp.relation.referenceParra ER, 2021, FRONT MOL BIOSCI, V8, DOI 10.3389/fmolb.2021.668340eng
hcfmusp.relation.referenceParra ER, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-88156-0eng
hcfmusp.relation.referenceParra ER, 2020, CANCERS, V12, DOI 10.3390/cancers12020255eng
hcfmusp.relation.referencePathria P, 2019, TRENDS IMMUNOL, V40, P310, DOI 10.1016/j.it.2019.02.003eng
hcfmusp.relation.referencePettersen JS, 2011, J INVEST DERMATOL, V131, P1322, DOI [10.1038/jid.2011.9, 10.103/jid.2011.9]eng
hcfmusp.relation.referencePulford E, 2017, DIS MARKERS, V2017, DOI 10.1155/2017/1310478eng
hcfmusp.relation.referenceQian Y, 2017, ACS NANO, V11, P9536, DOI 10.1021/acsnano.7b05465eng
hcfmusp.relation.referenceQuatromoni JG, 2012, AM J TRANSL RES, V4, P376eng
hcfmusp.relation.referenceRauch Isabella, 2013, JAKSTAT, V2, pe23820, DOI 10.4161/jkst.23820eng
hcfmusp.relation.referenceRodriguez-Garcia A, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-20893-2eng
hcfmusp.relation.referenceSnel B, 2000, NUCLEIC ACIDS RES, V28, P3442, DOI 10.1093/nar/28.18.3442eng
hcfmusp.relation.referenceSuzuki K, 2022, CELL DEATH DISCOV, V8, DOI 10.1038/s41420-022-01232-weng
hcfmusp.relation.referenceSzklarczyk D, 2021, NUCLEIC ACIDS RES, V49, P10800, DOI 10.1093/nar/gkab835eng
hcfmusp.relation.referenceTakahashi K, 2016, ANN GLOB HEALTH, V82, P209, DOI 10.1016/j.aogh.2016.01.019eng
hcfmusp.relation.referenceTomek S, 2004, LUNG CANCER, V45, pS103, DOI 10.1016/j.lungcan.2004.04.020eng
hcfmusp.relation.referenceVan Overmeire E, 2014, FRONT IMMUNOL, V5, P1, DOI 10.3389/fimmu.2014.00127eng
hcfmusp.relation.referencevan Steenwijk PJD, 2013, INT J CANCER, V133, P2884, DOI 10.1002/ijc.28309eng
hcfmusp.relation.referenceWu LC, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2210836120eng
hcfmusp.relation.referenceWu XS, 2014, J INVEST DERMATOL, V134, P2814, DOI 10.1038/jid.2014.206eng
hcfmusp.relation.referenceWynn TA, 2013, NATURE, V496, P445, DOI 10.1038/nature12034eng
hcfmusp.relation.referenceXue JM, 2020, P NATL ACAD SCI USA, V117, P25543, DOI 10.1073/pnas.2007622117eng
hcfmusp.relation.referenceYang HN, 2006, P NATL ACAD SCI USA, V103, P10397, DOI 10.1073/pnas.0604008103eng
hcfmusp.relation.referenceZhang QW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050946eng
hcfmusp.relation.referenceZhou YY, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09234-6eng
hcfmusp.relation.referenceZolondick Alicia A, 2021, Precis Cancer Med, V4, DOI 10.21037/pcm-21-12eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationc474bbcf-7df6-4d48-aed5-60eab1b80508
relation.isAuthorOfPublication50855176-2fc2-4bf5-ab0f-05eb347cf4c6
relation.isAuthorOfPublicationd81beb36-462b-4cb9-8a6c-b3a1100e20ac
relation.isAuthorOfPublicationd61a5687-a387-4dd8-9317-52d33fa0dde1
relation.isAuthorOfPublication4228e3d6-a9ae-443b-a86a-121ed5cb2ea2
relation.isAuthorOfPublication2640d453-a3aa-4d29-bb24-9a547c6c8712
relation.isAuthorOfPublicationeabdbb85-f2d4-497a-a33c-81c972fe1a4b
relation.isAuthorOfPublication.latestForDiscoveryd61a5687-a387-4dd8-9317-52d33fa0dde1
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_LABERIANO-FERNANDEZ_The_Immunological_Landscape_of_M1_and_M2_Macrophages_2023.PDF
Tamanho:
4.55 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)